Zonation of groundwater quality in terms of drinkability, using Fuzzy Logic and Schoeller deterministic method for Northern Dezful - Andimeshk Plain, Iran

Sedigheh Shakour, Manouchehr Chitsazan, Seyed Yahya Mirzaee
{"title":"Zonation of groundwater quality in terms of drinkability, using Fuzzy Logic and Schoeller deterministic method for Northern Dezful - Andimeshk Plain, Iran","authors":"Sedigheh Shakour, Manouchehr Chitsazan, Seyed Yahya Mirzaee","doi":"10.1007/s43832-023-00046-w","DOIUrl":null,"url":null,"abstract":"Abstract In the Northern Dezful-Andimeshk Plain, the primary source of drinking water is groundwater, which has low quality in some places. Thus, groundwater quality in this area needs an accurate evaluation. In this research, the fuzzy and Schoeller deterministic method assessed the Northern Dezful-Andimeshk Plain drinking water, and the results of both methods were used to zone and compare the drinking quality of the plain groundwater in the Arc GIS environment. The deterministic method classifies drinking water quality from good to bad. According to this method, 56.81% of the total area of the plain has good quality, 20.83% of the total area is acceptable, 18.77% of the total area has inappropriate quality, and 3.57% of the total area has bad quality. However, in the fuzzy method, groundwater in 21.6% of the total area of the plain with a confidence percentage of 70% to 81% is desirable, in 75.23% of the total area of the plain with a confidence percentage of 32% to 70% is acceptable, and 3.69% of the total area of the plain with drinking confidence of 20% to 22% is nonacceptable. The results showed that the fuzzy method is better than the Schoeller deterministic method because it reduces uncertainties, increases accuracy in the evaluation, increases flexibility in the threshold limits of water quality parameters, and provides a quantitative and qualitative assessment of drinking water. Also the zoning map obtained from this method is more compatible with environmental and pollution realities. Graphical Abstract","PeriodicalId":29971,"journal":{"name":"Discover Water","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43832-023-00046-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In the Northern Dezful-Andimeshk Plain, the primary source of drinking water is groundwater, which has low quality in some places. Thus, groundwater quality in this area needs an accurate evaluation. In this research, the fuzzy and Schoeller deterministic method assessed the Northern Dezful-Andimeshk Plain drinking water, and the results of both methods were used to zone and compare the drinking quality of the plain groundwater in the Arc GIS environment. The deterministic method classifies drinking water quality from good to bad. According to this method, 56.81% of the total area of the plain has good quality, 20.83% of the total area is acceptable, 18.77% of the total area has inappropriate quality, and 3.57% of the total area has bad quality. However, in the fuzzy method, groundwater in 21.6% of the total area of the plain with a confidence percentage of 70% to 81% is desirable, in 75.23% of the total area of the plain with a confidence percentage of 32% to 70% is acceptable, and 3.69% of the total area of the plain with drinking confidence of 20% to 22% is nonacceptable. The results showed that the fuzzy method is better than the Schoeller deterministic method because it reduces uncertainties, increases accuracy in the evaluation, increases flexibility in the threshold limits of water quality parameters, and provides a quantitative and qualitative assessment of drinking water. Also the zoning map obtained from this method is more compatible with environmental and pollution realities. Graphical Abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊逻辑和Schoeller确定性方法的伊朗北部Dezful - Andimeshk平原地下水可饮用性水质分区
摘要德德梅西克平原北部地区饮用水的主要来源是地下水,部分地区地下水水质较差。因此,需要对该地区的地下水水质进行准确的评价。本研究采用模糊和Schoeller确定性评价方法对德德富-安迪梅斯克北部平原饮用水进行评价,并利用两种方法的评价结果对arcgis环境下平原地下水的饮用质量进行分区和比较。确定性方法将饮用水水质从好到坏进行分类。根据该方法,平原总面积中质量优良的占56.81%,质量尚可的占20.83%,质量不合格的占18.77%,质量差的占3.57%。然而,在模糊方法中,平原总面积的21.6%的地下水在70% ~ 81%的置信区间内是适宜的,平原总面积的75.23%的地下水在32% ~ 70%的置信区间内是可接受的,平原总面积的3.69%的地下水在20% ~ 22%的置信区间内是不可接受的。结果表明,模糊评价方法减少了不确定性,提高了评价的准确性,增加了水质参数阈值的灵活性,能够对饮用水进行定量和定性评价,优于Schoeller确定性评价方法。该方法得到的分区图也更符合环境和污染的实际情况。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Discover Water
Discover Water water research-
自引率
0.00%
发文量
13
审稿时长
23 days
期刊介绍: Discover Water is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is an open access, community-focussed journal publishing research from across all fields relevant to water research. Discover Water is a broad, open access journal publishing research from across all fields relevant to the science and technology of water research and management. Discover Water covers not only research on water as a resource, for example for drinking, agriculture and sanitation, but also the impact of society on water, such as the effect of human activities on water availability and pollution. As such it looks at the overall role of water at a global level, including physical, chemical, biological, and ecological processes, and social, policy, and public health implications. It is also intended that articles published in Discover Water may help to support and accelerate United Nations Sustainable Development Goal 6: ‘Clean water and sanitation’.
期刊最新文献
Optimizing water supply systems in developing regions: a sustainable approach using ESCO model system for urban water supply in Dehradun, India Minimum environmental flow assessment: a fuzzy TOPSIS decision-making system for selecting the best approach Investigation and detection of multiple antibiotic-resistant pathogenic bacteria in municipal wastewater of Dhaka city Drought trend and its association with land surface temperature (LST) over homogeneous drought regions of India (2001–2019) Geospatial insights into groundwater contamination from urban and industrial effluents in Faisalabad
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1