Real-time artificial intelligence enhanced defect engineering in CeO2 nanostructures

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Journal of Vacuum Science & Technology A Pub Date : 2023-11-02 DOI:10.1116/6.0002912
Udit Kumar, Ayush Arunachalam, Corbin Feit, S. Novia Berriel, Kanad Basu, Parag Banerjee, Sudipta Seal
{"title":"Real-time artificial intelligence enhanced defect engineering in CeO2 nanostructures","authors":"Udit Kumar, Ayush Arunachalam, Corbin Feit, S. Novia Berriel, Kanad Basu, Parag Banerjee, Sudipta Seal","doi":"10.1116/6.0002912","DOIUrl":null,"url":null,"abstract":"CeO2 nanostructures have been utilized for various biomedical, sensor, and catalysis applications owing to their unique defect structure, enabling them to have regenerative oxidative properties. Defect engineering in CeO2 nanostructures has major importance, enabling them to be utilized for specific applications. Despite various synthesis methods, it is challenging to have precise and reversible control over defect structures. Against this backdrop, in the current work, we have explored machine learning (ML) enhanced defect engineering of CeO2 nanofilms. In our earlier work [J. Vac. Sci. Technol. A 39, 060405 (2021)], we have developed an atomic layer deposition process for CeO2 using in situ ellipsometry measurements. In the current work, data collected through in situ spectroscopic ellipsometry and ex situ XPS have been correlated using two ML algorithms (gradient boost and random forest regressor) to exert better control over the chemical properties. Defect structures are one of the desired properties in CeO2 nanomaterials, characterized by the Ce3+/Ce4+ oxidation state ratio leading to its regenerative properties. We have shown that the defect structure of the CeO2 nanofilms can be predicted using in situ ellipsometry data in real time using a trained ML algorithm using two different methods. The first method involves an indirect approach of thickness prediction using an ML algorithm (k-nearest neighbors) followed by Ce3+/Ce4+ estimation using an experimental calibration curve. The second method with a more direct approach involves Ce3+/Ce4+ prediction using real-time ellipsometry data (amplitude ratio ψ and phase difference Δ) using gradient boost and random forest regressor.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002912","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

CeO2 nanostructures have been utilized for various biomedical, sensor, and catalysis applications owing to their unique defect structure, enabling them to have regenerative oxidative properties. Defect engineering in CeO2 nanostructures has major importance, enabling them to be utilized for specific applications. Despite various synthesis methods, it is challenging to have precise and reversible control over defect structures. Against this backdrop, in the current work, we have explored machine learning (ML) enhanced defect engineering of CeO2 nanofilms. In our earlier work [J. Vac. Sci. Technol. A 39, 060405 (2021)], we have developed an atomic layer deposition process for CeO2 using in situ ellipsometry measurements. In the current work, data collected through in situ spectroscopic ellipsometry and ex situ XPS have been correlated using two ML algorithms (gradient boost and random forest regressor) to exert better control over the chemical properties. Defect structures are one of the desired properties in CeO2 nanomaterials, characterized by the Ce3+/Ce4+ oxidation state ratio leading to its regenerative properties. We have shown that the defect structure of the CeO2 nanofilms can be predicted using in situ ellipsometry data in real time using a trained ML algorithm using two different methods. The first method involves an indirect approach of thickness prediction using an ML algorithm (k-nearest neighbors) followed by Ce3+/Ce4+ estimation using an experimental calibration curve. The second method with a more direct approach involves Ce3+/Ce4+ prediction using real-time ellipsometry data (amplitude ratio ψ and phase difference Δ) using gradient boost and random forest regressor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时人工智能增强CeO2纳米结构缺陷工程
由于其独特的缺陷结构,CeO2纳米结构已被用于各种生物医学,传感器和催化应用,使其具有再生氧化特性。CeO2纳米结构的缺陷工程具有重要的意义,使其能够用于特定的应用。尽管有各种各样的合成方法,但对缺陷结构进行精确和可逆的控制是一项挑战。在此背景下,在当前的工作中,我们探索了机器学习(ML)增强CeO2纳米膜缺陷工程。在我们早期的工作中[J]。真空吸尘器。科学。抛光工艺。[A 39, 060405(2021)],我们已经开发了一种使用原位椭偏振测量的CeO2原子层沉积工艺。在目前的工作中,通过原位光谱椭偏仪和非原位XPS收集的数据使用两种ML算法(梯度增强和随机森林回归)进行关联,以更好地控制化学性质。缺陷结构是CeO2纳米材料的理想性能之一,其特征是Ce3+/Ce4+氧化态比导致其再生性能。我们已经证明了CeO2纳米膜的缺陷结构可以使用两种不同的方法,使用训练好的ML算法实时预测原位椭偏数据。第一种方法是使用ML算法(k近邻)间接预测厚度,然后使用实验校准曲线进行Ce3+/Ce4+估计。第二种方法采用更直接的方法,使用梯度增强和随机森林回归,使用实时椭偏数据(振幅比ψ和相位差Δ)进行Ce3+/Ce4+预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Vacuum Science & Technology A
Journal of Vacuum Science & Technology A 工程技术-材料科学:膜
CiteScore
5.10
自引率
10.30%
发文量
247
审稿时长
2.1 months
期刊介绍: Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.
期刊最新文献
ToF-SIMS analysis of ultrathin films and their fragmentation patterns. Spinel LiGa5O8 prospects as ultra-wideband-gap semiconductor: Band structure, optical properties, and doping Dislocation avalanches in nanostructured molybdenum nanopillars Plasma nitridation for atomic layer etching of Ni Hardness, adhesion, and wear behavior of magnetron cosputtered Ti:Zr-O-N thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1