Multi-object 3D segmentation of brain structures using a geometric deformable model with a priori knowledge

Mohamed Baghdadi, Nacéra Benamrane, Mounir Boukadoum, Lakhdar Sais
{"title":"Multi-object 3D segmentation of brain structures using a geometric deformable model with a priori knowledge","authors":"Mohamed Baghdadi, Nacéra Benamrane, Mounir Boukadoum, Lakhdar Sais","doi":"10.1080/13682199.2023.2256504","DOIUrl":null,"url":null,"abstract":"Brain structure segmentation in 3D Magnetic Resonance Images is crucial for understanding neurodegenerative disorders. Manual segmentation is error-prone, necessitating robust automated techniques. In this paper, we introduce a novel and robust approach for the simultaneous segmentation of multiple brain structures in MRI images. Our method involves the concurrent evolution of 3D surfaces toward predefined anatomical targets, employing an efficient multi-object generalized fast marching method (MOGFMM) for simultaneous object detection. Additionally, we propose an effective evolution function that integrates prior knowledge from anatomical and probabilistic atlases, as well as spatial relationships among the segmented structures. Each deformable surface corresponds to a specific structure. To validate our approach, we conducted experiments on a dataset of real brain images (IBSR) and compared the results with several state-of-the-art methods. The obtained results were promising, demonstrating the effectiveness and superiority of our developed method.","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Imaging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13682199.2023.2256504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain structure segmentation in 3D Magnetic Resonance Images is crucial for understanding neurodegenerative disorders. Manual segmentation is error-prone, necessitating robust automated techniques. In this paper, we introduce a novel and robust approach for the simultaneous segmentation of multiple brain structures in MRI images. Our method involves the concurrent evolution of 3D surfaces toward predefined anatomical targets, employing an efficient multi-object generalized fast marching method (MOGFMM) for simultaneous object detection. Additionally, we propose an effective evolution function that integrates prior knowledge from anatomical and probabilistic atlases, as well as spatial relationships among the segmented structures. Each deformable surface corresponds to a specific structure. To validate our approach, we conducted experiments on a dataset of real brain images (IBSR) and compared the results with several state-of-the-art methods. The obtained results were promising, demonstrating the effectiveness and superiority of our developed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于先验知识的几何变形模型脑结构多目标三维分割
三维磁共振图像中的脑结构分割对于理解神经退行性疾病至关重要。手动分割容易出错,需要强大的自动化技术。在本文中,我们介绍了一种新的鲁棒方法,用于同时分割MRI图像中的多个大脑结构。我们的方法涉及三维表面向预定义解剖目标的并发演化,采用高效的多目标广义快速推进方法(MOGFMM)进行同时目标检测。此外,我们提出了一个有效的进化函数,该函数集成了解剖学和概率地图集的先验知识,以及分割结构之间的空间关系。每个可变形表面对应一个特定的结构。为了验证我们的方法,我们在真实脑图像数据集(IBSR)上进行了实验,并将结果与几种最先进的方法进行了比较。所得结果令人满意,证明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of the Internet of Medical Things on Artificial Intelligence-enhanced medical imaging systems from 2019 to 2023 Advancements in adversarial generative text-to-image models: a review Enhancing image encryption security through integration multi-chaotic systems and mixed pixel-bit level Unsupervised low-light image enhancement by data augmentation and contrastive learning Minimum error threshold segmentation method for SAR image based on Rayleigh distribution assumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1