{"title":"Simulation of vapour compression air conditioning system using Al2O3 based nanofluid refrigerant","authors":"Mohammed DILAWAR, Adnan QAYOUM","doi":"10.18186/thermal.1377210","DOIUrl":null,"url":null,"abstract":"The energy crisis, Greenhouse Gas (GHG) emissions, and Chlorofluorocarbon (CFC) emis-sions are major environmental issues at present. It is critical to achieve and reduce emissions and energy consumption through the use of environmentally friendly refrigerants. Utilizing an environmentally friendly refrigerant such as HFC-32 may offer a viable solution to the ozone depletion potential (ODP) and global warming issues. This study examines the effects of aluminium oxide (Al2O3) nanoparticles at volume concentrations of 0.06, 0.08, 0.1, 0.12, 
 and 0.14% in pure refrigerants such as HFC-32 and R-410a used in air-conditioning systems based on the vapour compression refrigeration cycle. The thermophysical properties of pure and nanorefrigerants have been determined using REFPROP (NIST properties of fluid Refer-ence) and a theoretical formulation model using MATLAB software. The important outcomes of HFC-32 nanorefrigerant show the maximum performance with 0.14% alumina nano addi-tives which results in a 46.14% increase in the coefficient of performance (COP) and massive power savings upto 31.59%. Thermal conductivity exhibited an increase with an increment in nanoparticle concentration. Maximum thermal conductivity of 0.172 W/m-K is recorded 
 in the case of HFC-32/Al2O3 nanorefrigerant with 0.14% volume concentration. The net re-frigeration effect of pure refrigerants (R410a and HFC-32) is 77% and 79% and on addition of nanorefrigerants to the pure the net refrigeration effect increases to 81.2% and 83.5% for R410a and HFC-32 respectively.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1377210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The energy crisis, Greenhouse Gas (GHG) emissions, and Chlorofluorocarbon (CFC) emis-sions are major environmental issues at present. It is critical to achieve and reduce emissions and energy consumption through the use of environmentally friendly refrigerants. Utilizing an environmentally friendly refrigerant such as HFC-32 may offer a viable solution to the ozone depletion potential (ODP) and global warming issues. This study examines the effects of aluminium oxide (Al2O3) nanoparticles at volume concentrations of 0.06, 0.08, 0.1, 0.12,
and 0.14% in pure refrigerants such as HFC-32 and R-410a used in air-conditioning systems based on the vapour compression refrigeration cycle. The thermophysical properties of pure and nanorefrigerants have been determined using REFPROP (NIST properties of fluid Refer-ence) and a theoretical formulation model using MATLAB software. The important outcomes of HFC-32 nanorefrigerant show the maximum performance with 0.14% alumina nano addi-tives which results in a 46.14% increase in the coefficient of performance (COP) and massive power savings upto 31.59%. Thermal conductivity exhibited an increase with an increment in nanoparticle concentration. Maximum thermal conductivity of 0.172 W/m-K is recorded
in the case of HFC-32/Al2O3 nanorefrigerant with 0.14% volume concentration. The net re-frigeration effect of pure refrigerants (R410a and HFC-32) is 77% and 79% and on addition of nanorefrigerants to the pure the net refrigeration effect increases to 81.2% and 83.5% for R410a and HFC-32 respectively.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.