Parametric Reduced Order Model of a Gas Bearings Supported Rotor

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering for Gas Turbines and Power-transactions of The Asme Pub Date : 2023-10-17 DOI:10.1115/1.4063424
Dimitri Goutaudier, Jüurg Schiffmann, Fabio Nobile
{"title":"Parametric Reduced Order Model of a Gas Bearings Supported Rotor","authors":"Dimitri Goutaudier, Jüurg Schiffmann, Fabio Nobile","doi":"10.1115/1.4063424","DOIUrl":null,"url":null,"abstract":"Abstract Gas bearings use pressurized gas as a lubricant to support and guide rotating machinery. These bearings have a number of advantages over traditional lubricated bearings, including higher efficiency in a variety of applications and reduced maintenance requirements. However, they are more complex to operate and exhibit nonlinear behaviors. This paper presents a parametric hyper reduced order model (h-ROM) of a gas bearings supported rotor enabling to speed up the computations up to a factor 100 while preserving satisfactory accuracy. A Galerkin projection setting is employed to reduce the dimension of the governing equations and the nonlinear terms are efficiently tackled with a sparse sampling technique. The performances of the h-ROM are compared to a high fidelity model both in terms of accuracy and computation time, demonstrating the potential for future anomaly detection applications.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":"32 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063424","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Gas bearings use pressurized gas as a lubricant to support and guide rotating machinery. These bearings have a number of advantages over traditional lubricated bearings, including higher efficiency in a variety of applications and reduced maintenance requirements. However, they are more complex to operate and exhibit nonlinear behaviors. This paper presents a parametric hyper reduced order model (h-ROM) of a gas bearings supported rotor enabling to speed up the computations up to a factor 100 while preserving satisfactory accuracy. A Galerkin projection setting is employed to reduce the dimension of the governing equations and the nonlinear terms are efficiently tackled with a sparse sampling technique. The performances of the h-ROM are compared to a high fidelity model both in terms of accuracy and computation time, demonstrating the potential for future anomaly detection applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体轴承支承转子的参数化降阶模型
气体轴承采用加压气体作为润滑剂来支撑和引导旋转机械。与传统的润滑轴承相比,这些轴承具有许多优点,包括在各种应用中效率更高,维护要求更低。然而,它们的操作更复杂,并表现出非线性行为。本文提出了一种气体轴承支撑转子的参数化超降阶模型(h-ROM),使计算速度提高到100倍,同时保持令人满意的精度。采用伽辽金投影设置来降低控制方程的维数,并采用稀疏采样技术有效地处理非线性项。在精度和计算时间方面,将h-ROM的性能与高保真模型进行了比较,展示了未来异常检测应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
20.00%
发文量
292
审稿时长
2.0 months
期刊介绍: The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.
期刊最新文献
Effect of Inert Species On the Static and Dynamic Stability of a Piloted, Swirl-Stabilized Flame Advanced Modelling of Flow and Heat Transfer in Rotating Disc Cavities Using Open-Source CFD Reacting Flow Prediction of the Low-Swirl Lifted Flame in an Aeronautical Combustor with Angular Air Supply Effect of Unsteady Fan-Intake Interaction On Short Intake Design Intermittency of Flame Structure and Thermo-acoustic Behavior in a Staged Multipoint Injector Using Liquid Fuel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1