Christopher M Douglas, Thomas Martz, Robert Steele, David Noble, Benjamin Emerson, Tim Lieuwen
{"title":"Pollutant Emissions Reporting and Performance Considerations for Ammonia-Blended Fuels in Gas Turbines","authors":"Christopher M Douglas, Thomas Martz, Robert Steele, David Noble, Benjamin Emerson, Tim Lieuwen","doi":"10.1115/1.4063417","DOIUrl":null,"url":null,"abstract":"Abstract To limit climate change and promote energy security, there is widespread interest toward transitioning existing fossil fueled combustion systems to sustainable, alternative fuels such as hydrogen (H2) and ammonia (NH3) without negatively impacting air quality. However, quantifying the emission rate of air pollutants such as nitrogen oxides (NOx) is a nuanced process when comparing pollutant emissions across different fuels, as discussed in our paper GT2022-80971 presented last year. That study indicated that the standardized approach for measuring combustion emissions in terms of dry, oxygen-referenced volumetric concentrations (i.e., dry ppmv at the reference O2 concentration (ppmvdr)) inflates reported pollutant emissions by up to 40% for hydrogen combustion relative to natural gas. In this paper, we extend our prior analysis of these so-called “indirect effects” on emissions values to ammonia (NH3) and cracked ammonia (i.e., molecular hydrogen and nitrogen, 3H2 per N2) fuel blends. The results reveal that ppmvdr-based pollutant reporting approaches have a less prominent influence on emissions interpretations for molecular ammonia–methane blends than for hydrogen–methane blends. Nonetheless, we still find that ppmvdr reporting induces up to a 10% relative increase in apparent emissions when comparing 100% NH3 and 100% methane (CH4) fuels at an equal mass-per-work emission rate. Cracking the ammonia is shown to increase this relative bias up to 21% in comparison to a methane system. Further analysis shows how drying, dilution, thermodynamic, and performance effects each influence the relationship between ppmvdr and mass-per-work emissions across the spectrum of fuels and fuel blends. Following discussion of these findings, we conclude that quantifying combustion emissions using ppmvdr is generally inappropriate for emissions comparisons and advise the combustion community to shift toward robust mass-per-energy metrics when quantifying pollutant emissions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063417","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract To limit climate change and promote energy security, there is widespread interest toward transitioning existing fossil fueled combustion systems to sustainable, alternative fuels such as hydrogen (H2) and ammonia (NH3) without negatively impacting air quality. However, quantifying the emission rate of air pollutants such as nitrogen oxides (NOx) is a nuanced process when comparing pollutant emissions across different fuels, as discussed in our paper GT2022-80971 presented last year. That study indicated that the standardized approach for measuring combustion emissions in terms of dry, oxygen-referenced volumetric concentrations (i.e., dry ppmv at the reference O2 concentration (ppmvdr)) inflates reported pollutant emissions by up to 40% for hydrogen combustion relative to natural gas. In this paper, we extend our prior analysis of these so-called “indirect effects” on emissions values to ammonia (NH3) and cracked ammonia (i.e., molecular hydrogen and nitrogen, 3H2 per N2) fuel blends. The results reveal that ppmvdr-based pollutant reporting approaches have a less prominent influence on emissions interpretations for molecular ammonia–methane blends than for hydrogen–methane blends. Nonetheless, we still find that ppmvdr reporting induces up to a 10% relative increase in apparent emissions when comparing 100% NH3 and 100% methane (CH4) fuels at an equal mass-per-work emission rate. Cracking the ammonia is shown to increase this relative bias up to 21% in comparison to a methane system. Further analysis shows how drying, dilution, thermodynamic, and performance effects each influence the relationship between ppmvdr and mass-per-work emissions across the spectrum of fuels and fuel blends. Following discussion of these findings, we conclude that quantifying combustion emissions using ppmvdr is generally inappropriate for emissions comparisons and advise the combustion community to shift toward robust mass-per-energy metrics when quantifying pollutant emissions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.