{"title":"Information-Centric Function Chaining for ICN-based In-Network Computing in the Beyond 5G/6G Era","authors":"Yusaku HAYAMIZU, Masahiro JIBIKI, Miki YAMAMOTO","doi":"10.1587/transcom.2023wwp0005","DOIUrl":null,"url":null,"abstract":"Information-Centric Networking (ICN) originally innovated for efficient data distribution, is currently discussed to be applied to edge computing environment. In this paper, we focus on a more flexible context, in-network computing, which is enabled by ICN architecture. In ICN-based in-network computing, a function chaining (routing) method for chaining multiple functions located at different routers widely distributed in the network is required. Our proposal is a twofold approach, On-demand Routing for Responsive Route (OR3) and Route Records (RR). OR3 efficiently chains data and multiple functions compared with an existing routing method. RR reactively stores routing information to reduce communication/ computing overhead. In this paper, we conducted a mathematical analytics in order to verify the correctness of the proposed routing algorithm. Moreover, we investigate applicabilities of OR3/RR to an edge computing context in the future Beyond 5G/6G era, in which rich computing resources are provided by mobile nodes thanks to the cutting-edge mobile device technologies. In the mobile environments, the optimum from viewpoint of “routing” is largely different from the stable wired environment. We address this challenging issue and newly propose protocol enhancements for OR3 by considering node mobility. Evaluation results reveal that mobility-enhanced OR3 can discover stable paths for function chaining to enable more reliable ICN-based in-network computing under the highly-dynamic network environment.","PeriodicalId":48825,"journal":{"name":"IEICE Transactions on Communications","volume":"128 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transcom.2023wwp0005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Information-Centric Networking (ICN) originally innovated for efficient data distribution, is currently discussed to be applied to edge computing environment. In this paper, we focus on a more flexible context, in-network computing, which is enabled by ICN architecture. In ICN-based in-network computing, a function chaining (routing) method for chaining multiple functions located at different routers widely distributed in the network is required. Our proposal is a twofold approach, On-demand Routing for Responsive Route (OR3) and Route Records (RR). OR3 efficiently chains data and multiple functions compared with an existing routing method. RR reactively stores routing information to reduce communication/ computing overhead. In this paper, we conducted a mathematical analytics in order to verify the correctness of the proposed routing algorithm. Moreover, we investigate applicabilities of OR3/RR to an edge computing context in the future Beyond 5G/6G era, in which rich computing resources are provided by mobile nodes thanks to the cutting-edge mobile device technologies. In the mobile environments, the optimum from viewpoint of “routing” is largely different from the stable wired environment. We address this challenging issue and newly propose protocol enhancements for OR3 by considering node mobility. Evaluation results reveal that mobility-enhanced OR3 can discover stable paths for function chaining to enable more reliable ICN-based in-network computing under the highly-dynamic network environment.
期刊介绍:
The IEICE Transactions on Communications is an all-electronic journal published occasionally by the Institute of Electronics, Information and Communication Engineers (IEICE) and edited by the Communications Society in IEICE. The IEICE Transactions on Communications publishes original, peer-reviewed papers that embrace the entire field of communications, including:
- Fundamental Theories for Communications
- Energy in Electronics Communications
- Transmission Systems and Transmission Equipment for Communications
- Optical Fiber for Communications
- Fiber-Optic Transmission for Communications
- Network System
- Network
- Internet
- Network Management/Operation
- Antennas and Propagation
- Electromagnetic Compatibility (EMC)
- Wireless Communication Technologies
- Terrestrial Wireless Communication/Broadcasting Technologies
- Satellite Communications
- Sensing
- Navigation, Guidance and Control Systems
- Space Utilization Systems for Communications
- Multimedia Systems for Communication