Alexander P. Hawkins, Andrea Zachariou, Paul Collier, Russell F. Howe, David Lennon, Stewart F. Parker
{"title":"Inelastic Neutron Scattering Studies of Propene and 1-Octene Oligomerisation in HZSM-5","authors":"Alexander P. Hawkins, Andrea Zachariou, Paul Collier, Russell F. Howe, David Lennon, Stewart F. Parker","doi":"10.1595/205651324x16964134291592","DOIUrl":null,"url":null,"abstract":"Neutron scattering methods (quasielastic neutron scattering (QENS) and inelastic neutron scattering (INS)) have been used to study the reactivity of propene and 1-octene over the acid zeolite catalyst H-ZSM 5. The high activity of the catalyst causes the alkenes to form linear oligomers below room temperature. INS has shown that the reaction proceeds through a hydrogen-bonded intermediate. Studies using propane as an inert analogue for propene have found that the adsorbed C3 molecules spend the majority of their time undergoing short jumps within the pore channels of the zeolite. Hydrothermal de-alumination plays an important role in determining the activity of zeolite catalysts. De-alumination was found to delay the onset of catalytic activity for oligomerization to higher temperatures and increase the mobility of hydrocarbons within the zeolite, both due to reduced acid-hydrocarbon interactions.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"297 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1595/205651324x16964134291592","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Neutron scattering methods (quasielastic neutron scattering (QENS) and inelastic neutron scattering (INS)) have been used to study the reactivity of propene and 1-octene over the acid zeolite catalyst H-ZSM 5. The high activity of the catalyst causes the alkenes to form linear oligomers below room temperature. INS has shown that the reaction proceeds through a hydrogen-bonded intermediate. Studies using propane as an inert analogue for propene have found that the adsorbed C3 molecules spend the majority of their time undergoing short jumps within the pore channels of the zeolite. Hydrothermal de-alumination plays an important role in determining the activity of zeolite catalysts. De-alumination was found to delay the onset of catalytic activity for oligomerization to higher temperatures and increase the mobility of hydrocarbons within the zeolite, both due to reduced acid-hydrocarbon interactions.
期刊介绍:
Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.