Development of a three-phase power-flow calculation method for distribution systems with automatic handling of arbitrary winding connections of transformers

IF 0.4 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electrical Engineering in Japan Pub Date : 2023-09-23 DOI:10.1002/eej.23445
Guilherme Cirilo Leandro, Taku Noda
{"title":"Development of a three-phase power-flow calculation method for distribution systems with automatic handling of arbitrary winding connections of transformers","authors":"Guilherme Cirilo Leandro,&nbsp;Taku Noda","doi":"10.1002/eej.23445","DOIUrl":null,"url":null,"abstract":"<p>Single-phase loads and photovoltaic generation cause three-phase imbalance in distribution systems, and prospective growth of normal chargers of electric vehicles may even increase the imbalance. The analysis of such unbalanced systems requires the three-phase power-flow calculation. Since existing methods require the admittance matrices of three-phase transformers, they must be derived for all possible winding connection patterns in advance to its computer-code implementation. This paper proposes a three-phase power-flow calculation method which formulates circuit equations using the modified nodal analysis, making it possible to automatically handle any winding connection. The power-flow constraints are then embedded into the circuit equations using a fixed-point iteration. Newton-Raphson, backward/forward sweep and fixed-point iteration methods are the existing three categories of solution methods. Newton-Raphson methods may show convergence problems due to the high R/X ratios of distribution lines. Backward/forward sweep methods cannot be used, because loops are temporarily formed in a distribution system during circuit switching. These justify the use of a fixed-point iteration. In this paper, the proposed method is validated by practical examples.</p>","PeriodicalId":50550,"journal":{"name":"Electrical Engineering in Japan","volume":"216 4","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eej.23445","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Single-phase loads and photovoltaic generation cause three-phase imbalance in distribution systems, and prospective growth of normal chargers of electric vehicles may even increase the imbalance. The analysis of such unbalanced systems requires the three-phase power-flow calculation. Since existing methods require the admittance matrices of three-phase transformers, they must be derived for all possible winding connection patterns in advance to its computer-code implementation. This paper proposes a three-phase power-flow calculation method which formulates circuit equations using the modified nodal analysis, making it possible to automatically handle any winding connection. The power-flow constraints are then embedded into the circuit equations using a fixed-point iteration. Newton-Raphson, backward/forward sweep and fixed-point iteration methods are the existing three categories of solution methods. Newton-Raphson methods may show convergence problems due to the high R/X ratios of distribution lines. Backward/forward sweep methods cannot be used, because loops are temporarily formed in a distribution system during circuit switching. These justify the use of a fixed-point iteration. In this paper, the proposed method is validated by practical examples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动处理变压器任意绕组连接的配电系统三相潮流计算方法的发展
单相负荷和光伏发电导致配电系统三相不平衡,电动汽车正常充电器的预期增长甚至可能加剧不平衡。这种不平衡系统的分析需要三相潮流计算。由于现有的方法需要三相变压器的导纳矩阵,因此必须在计算机代码实现之前推导出所有可能的绕组连接方式的导纳矩阵。本文提出了一种三相潮流计算方法,该方法利用修正的节点分析来建立电路方程,使自动处理任何绕组连接成为可能。然后利用不动点迭代将潮流约束嵌入到电路方程中。Newton-Raphson法、向后/向前扫描法和不动点迭代法是现有的三类求解方法。Newton-Raphson方法可能由于配电线路的高R/X比而出现收敛问题。不能使用反向/正向扫描方法,因为在电路切换过程中,配电系统中会临时形成环路。这证明了使用定点迭代是合理的。本文通过实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrical Engineering in Japan
Electrical Engineering in Japan 工程技术-工程:电子与电气
CiteScore
0.80
自引率
0.00%
发文量
51
审稿时长
4-8 weeks
期刊介绍: Electrical Engineering in Japan (EEJ) is an official journal of the Institute of Electrical Engineers of Japan (IEEJ). This authoritative journal is a translation of the Transactions of the Institute of Electrical Engineers of Japan. It publishes 16 issues a year on original research findings in Electrical Engineering with special focus on the science, technology and applications of electric power, such as power generation, transmission and conversion, electric railways (including magnetic levitation devices), motors, switching, power economics.
期刊最新文献
Issue Information Development of fatigue prediction system for bogie frame using a dynamic analysis model based on high-speed and high-precision stress estimation method Design and improvement of torque characteristics of half-wave rectified variable field flux motor with axial gap structure Evaluation of a vacuum insulated temperature calibration device to calibrate thermistor characteristics for skin cancer diagnosis Centralized control of large-scale wind farm for system frequency stabilization of the power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1