Development of a three-phase power-flow calculation method for distribution systems with automatic handling of arbitrary winding connections of transformers
{"title":"Development of a three-phase power-flow calculation method for distribution systems with automatic handling of arbitrary winding connections of transformers","authors":"Guilherme Cirilo Leandro, Taku Noda","doi":"10.1002/eej.23445","DOIUrl":null,"url":null,"abstract":"<p>Single-phase loads and photovoltaic generation cause three-phase imbalance in distribution systems, and prospective growth of normal chargers of electric vehicles may even increase the imbalance. The analysis of such unbalanced systems requires the three-phase power-flow calculation. Since existing methods require the admittance matrices of three-phase transformers, they must be derived for all possible winding connection patterns in advance to its computer-code implementation. This paper proposes a three-phase power-flow calculation method which formulates circuit equations using the modified nodal analysis, making it possible to automatically handle any winding connection. The power-flow constraints are then embedded into the circuit equations using a fixed-point iteration. Newton-Raphson, backward/forward sweep and fixed-point iteration methods are the existing three categories of solution methods. Newton-Raphson methods may show convergence problems due to the high R/X ratios of distribution lines. Backward/forward sweep methods cannot be used, because loops are temporarily formed in a distribution system during circuit switching. These justify the use of a fixed-point iteration. In this paper, the proposed method is validated by practical examples.</p>","PeriodicalId":50550,"journal":{"name":"Electrical Engineering in Japan","volume":"216 4","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eej.23445","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Single-phase loads and photovoltaic generation cause three-phase imbalance in distribution systems, and prospective growth of normal chargers of electric vehicles may even increase the imbalance. The analysis of such unbalanced systems requires the three-phase power-flow calculation. Since existing methods require the admittance matrices of three-phase transformers, they must be derived for all possible winding connection patterns in advance to its computer-code implementation. This paper proposes a three-phase power-flow calculation method which formulates circuit equations using the modified nodal analysis, making it possible to automatically handle any winding connection. The power-flow constraints are then embedded into the circuit equations using a fixed-point iteration. Newton-Raphson, backward/forward sweep and fixed-point iteration methods are the existing three categories of solution methods. Newton-Raphson methods may show convergence problems due to the high R/X ratios of distribution lines. Backward/forward sweep methods cannot be used, because loops are temporarily formed in a distribution system during circuit switching. These justify the use of a fixed-point iteration. In this paper, the proposed method is validated by practical examples.
期刊介绍:
Electrical Engineering in Japan (EEJ) is an official journal of the Institute of Electrical Engineers of Japan (IEEJ). This authoritative journal is a translation of the Transactions of the Institute of Electrical Engineers of Japan. It publishes 16 issues a year on original research findings in Electrical Engineering with special focus on the science, technology and applications of electric power, such as power generation, transmission and conversion, electric railways (including magnetic levitation devices), motors, switching, power economics.