Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY Asian Journal of Pharmaceutical Sciences Pub Date : 2024-02-01 DOI:10.1016/j.ajps.2023.100858
Jiafeng Zou , Zeting Yuan , Xiaojie Chen , You Chen , Min Yao , Yang Chen , Xiang Li , Yi Chen , Wenxing Ding , Chuanhe Xia , Yuzheng Zhao , Feng Gao
{"title":"Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications","authors":"Jiafeng Zou ,&nbsp;Zeting Yuan ,&nbsp;Xiaojie Chen ,&nbsp;You Chen ,&nbsp;Min Yao ,&nbsp;Yang Chen ,&nbsp;Xiang Li ,&nbsp;Yi Chen ,&nbsp;Wenxing Ding ,&nbsp;Chuanhe Xia ,&nbsp;Yuzheng Zhao ,&nbsp;Feng Gao","doi":"10.1016/j.ajps.2023.100858","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen sulfide (H<sub>2</sub>S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H<sub>2</sub>S. Therefore, effective strategies to remove H<sub>2</sub>S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H<sub>2</sub>S. This paper was performed to review the association between H<sub>2</sub>S and disease, related H<sub>2</sub>S inhibitory drugs, as well as H<sub>2</sub>S responsive nanoplatforms (HRNs). This review first analyzed the role of H<sub>2</sub>S in multiple tissues and conditions. Second, common drugs used to eliminate H<sub>2</sub>S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H<sub>2</sub>S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 1","pages":"Article 100858"},"PeriodicalIF":10.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1818087623000855/pdfft?md5=22e01692eefc141a27c5db32e0929ab5&pid=1-s2.0-S1818087623000855-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087623000855","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen sulfide (H2S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H2S. Therefore, effective strategies to remove H2S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H2S. This paper was performed to review the association between H2S and disease, related H2S inhibitory drugs, as well as H2S responsive nanoplatforms (HRNs). This review first analyzed the role of H2S in multiple tissues and conditions. Second, common drugs used to eliminate H2S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H2S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫化氢响应纳米平台:用于生物医学应用的新型气体响应性给药载体
硫化氢(H2S)是一种有毒的基本气体,可用于各种生物和物理过程,并一直是许多关于其作为新型气体发射器的针对性研究的主题。这些研究主要集中在 H2S 的产生和药理副作用方面。因此,去除 H2S 的有效策略已成为一个关键的研究课题。此外,新型纳米平台的开发为有针对性地去除 H2S 提供了新工具。本文综述了 H2S 与疾病的关系、相关的 H2S 抑制药物以及 H2S 响应纳米平台(HRNs)。本综述首先分析了 H2S 在多种组织和病症中的作用。其次,总结了用于消除 H2S 的常见药物及其与抗癌药物结合的潜力。本综述不仅梳理了现有的关于 HRNs 的研究,还梳理了抑制 H2S 与不同治疗方法的结合。此外,本综述还详细深入地分析了 HRNs 在治疗或检测方面的潜力。最后,还提出了 HRNs 可能面临的挑战。本研究证明了 HRNs 在生物医学应用方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
期刊最新文献
Extracellular vesicle-functionalized bioactive scaffolds for bone regeneration Recent advances in spatio-temporally controllable systems for management of glioma Deep near infrared light-excited stable synergistic photodynamic and photothermal therapies based on P-IR890 nano-photosensitizer constructed via a non-cyanine dye Electrostatic spraying for fine-tuning particle dimensions to enhance oral bioavailability of poorly water-soluble drugs Metal-organic frameworks in oral drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1