Dibenzofuran Degradation by Bacterial Community in Landfill Leachate

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES Pertanika Journal of Science and Technology Pub Date : 2023-10-12 DOI:10.47836/pjst.31.6.27
Farah Najwa Ahmad, Noor Faizul Hadry Nordin, Muhamad Shirwan Abdullah Sani, Wan Syibrah Hanisah Wan Sulaiman
{"title":"Dibenzofuran Degradation by Bacterial Community in Landfill Leachate","authors":"Farah Najwa Ahmad, Noor Faizul Hadry Nordin, Muhamad Shirwan Abdullah Sani, Wan Syibrah Hanisah Wan Sulaiman","doi":"10.47836/pjst.31.6.27","DOIUrl":null,"url":null,"abstract":"The contamination of the environment has been a global issue, and bioremediation is proposed as an option to clean up the contamination sites with the promising utilization of bacterial community capabilities. The indigenous bacterial community in the landfill leachate is recognized to carry enzymes for the degradation of contaminants such as dioxin congeners, the dibenzofuran. Environmental factors have been known to influence the process to achieve successful biodegradation, and the optimized conditions may speed up the biodegradation process. Thus, this study was conducted to optimize the substrate availability, temperature, and pH factor for the degradation of dibenzofuran from landfill leachate by the native bacterial community in landfill leachate. This study uses the one-factor at-time (OFAT) approach to measure dibenzofuran degradation. The landfill leachate with enrichment of dibenzofuran (15 to 45 mg L-1) was incubated at temperatures (30°C to 42°C) and pH (5 to 9) for 24 hours before being extracted and analyzed. From the first part of the study, 15 mg L-1 of dibenzofuran, 30°C temperature, and pH 7 have shown the highest dibenzofuran degradation. Later, the optimum condition of dibenzofuran removal (74.40%) was achieved when the landfill leachate was spiked with 15 ppm dibenzofuran at 30°C and pH 7 for 24 hours. This study proposes optimized conditions that give a better result for dibenzofuran degradation, which may enhance bioremediation.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.6.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The contamination of the environment has been a global issue, and bioremediation is proposed as an option to clean up the contamination sites with the promising utilization of bacterial community capabilities. The indigenous bacterial community in the landfill leachate is recognized to carry enzymes for the degradation of contaminants such as dioxin congeners, the dibenzofuran. Environmental factors have been known to influence the process to achieve successful biodegradation, and the optimized conditions may speed up the biodegradation process. Thus, this study was conducted to optimize the substrate availability, temperature, and pH factor for the degradation of dibenzofuran from landfill leachate by the native bacterial community in landfill leachate. This study uses the one-factor at-time (OFAT) approach to measure dibenzofuran degradation. The landfill leachate with enrichment of dibenzofuran (15 to 45 mg L-1) was incubated at temperatures (30°C to 42°C) and pH (5 to 9) for 24 hours before being extracted and analyzed. From the first part of the study, 15 mg L-1 of dibenzofuran, 30°C temperature, and pH 7 have shown the highest dibenzofuran degradation. Later, the optimum condition of dibenzofuran removal (74.40%) was achieved when the landfill leachate was spiked with 15 ppm dibenzofuran at 30°C and pH 7 for 24 hours. This study proposes optimized conditions that give a better result for dibenzofuran degradation, which may enhance bioremediation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垃圾渗滤液中细菌群落降解二苯并呋喃的研究
环境污染已成为一个全球性的问题,生物修复被认为是一种有希望利用细菌群落能力清理污染场所的选择。垃圾填埋场渗滤液中的本地细菌群落被认为携带降解污染物的酶,如二恶英同系物二苯并呋喃。环境因素对生物降解过程的影响是已知的,优化后的条件可以加速生物降解过程。因此,本研究旨在优化垃圾渗滤液中原生细菌群落降解二苯并呋喃的基质利用率、温度和pH因子。本研究采用单因素一次法(OFAT)测量二苯并呋喃的降解。富集双苯并呋喃(15 ~ 45mg L-1)的垃圾渗滤液在温度(30℃~ 42℃)、pH(5 ~ 9)条件下孵育24小时后提取分析。从研究的第一部分开始,15 mg L-1的二苯并呋喃、30°C的温度和pH 7对二苯并呋喃的降解效果最好。在30℃、pH 7条件下,投加15 ppm的二苯并呋喃24小时,二苯并呋喃去除率达到74.40%。本研究提出了对二苯并呋喃降解效果较好的优化条件,可提高生物修复效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pertanika Journal of Science and Technology
Pertanika Journal of Science and Technology MULTIDISCIPLINARY SCIENCES-
CiteScore
1.50
自引率
16.70%
发文量
178
期刊介绍: Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.
期刊最新文献
A Review on the Development of Microcarriers for Cell Culture Applications The Compatibility of Cement Bonded Fibreboard Through Dimensional Stability Analysis: A Review Bending Effects on Polyvinyl Alcohol Thin Film for Flexible Wearable Antenna Substrate Mesh Optimisation for General 3D Printed Objects with Cusp-Height Triangulation Approach The Riblet Short-Slot Coupler Using Substrate Integrated Waveguide (SIW) for High-frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1