{"title":"Increasing design flexibility by manually adapting the solution space for crashworthiness","authors":"Paolo Ascia, Volker A. Lange, Fabian Duddeck","doi":"10.1186/s13362-023-00137-2","DOIUrl":null,"url":null,"abstract":"Abstract The solution space methodology, as presented in 2013, was meant to guide developers at the very beginning of the development process of a new mechanically crashworthy car. Several attempts were already made to use this methodology at later development stages. However, they all encountered problems related to its very strict and demanding corridors, thus constricting the design parameters. To allow more flexibility, two different approaches were proposed to relax the initial strict conditions. The first introduced temporal dependencies to widen the corridors. The second locally changed the corridors to adapt to the needs of the development, introducing dependencies between components. We, on the contrary, propose a new method to increase flexibility without introducing any kind of dependencies. We manage this by computing the intervals of solution space under user-defined conditions, hence selecting a custom set of independent corridors that fits the data gathered during development; i.e.: force-deformation curves that can be measured during a drop-tower test simulation. This new methodology of the adaptive solution space allows designers to edit the corridors, in order to have more flexibility for fulfilling high-level requirements when independently designing new components.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-023-00137-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The solution space methodology, as presented in 2013, was meant to guide developers at the very beginning of the development process of a new mechanically crashworthy car. Several attempts were already made to use this methodology at later development stages. However, they all encountered problems related to its very strict and demanding corridors, thus constricting the design parameters. To allow more flexibility, two different approaches were proposed to relax the initial strict conditions. The first introduced temporal dependencies to widen the corridors. The second locally changed the corridors to adapt to the needs of the development, introducing dependencies between components. We, on the contrary, propose a new method to increase flexibility without introducing any kind of dependencies. We manage this by computing the intervals of solution space under user-defined conditions, hence selecting a custom set of independent corridors that fits the data gathered during development; i.e.: force-deformation curves that can be measured during a drop-tower test simulation. This new methodology of the adaptive solution space allows designers to edit the corridors, in order to have more flexibility for fulfilling high-level requirements when independently designing new components.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.