Peter Nyanor, Hossam M. Yehia, Abdollah Bahador, Junko Umeda, Katsuyoshi Kondoh, Mohsen A. Hassan
{"title":"Microstructure and mechanical properties of hybrid nano-titanium carbide-carbon nanotubes (nano-TiC-CNT) reinforced aluminium matrix composite","authors":"Peter Nyanor, Hossam M. Yehia, Abdollah Bahador, Junko Umeda, Katsuyoshi Kondoh, Mohsen A. Hassan","doi":"10.1080/09243046.2023.2253097","DOIUrl":null,"url":null,"abstract":"AbstractTo use Al composites in structural applications, we need to improve strength and ductility at the same time. In this article, we explore three main concepts to solve this problem: improving the dispersion uniformity of CNTs in Al powder without damaging its structure by solution coating technique, fabricating a hybrid composite by reinforcing Al with nano-TiC-CNT, comparing the properties of nano-TiC-CNT and micron-TiC-CNT hybrid composites. Microstructure observation by SEM, TEM, and XRD revealed well-dispersed and preserved CNTs without the formation of a second phase. The Al-0.5CNT composite showed good tensile strength and elongation at break of 278 MPa and 14%, respectively. Further improvements in tensile strength and ductility of 285 MPa and 23%, respectively, were measured after the addition of 2.5 wt%; (1.4 vol%) TiC nanoparticles to Al-0.5CNT composite. However, the introduction of 2.5 wt-% TiC macroparticles only improved the tensile strength by 48% but elongation at break was up to 32%. The improved strength and ductility are attributed to the introduction of geometrical necessary dislocation and Orowan looping of dislocations leading to back stress strengthening. The new Al composite is expected to find application in automotive and aerospace component manufacture and thermal management.Keywords: Aluminium matrix compositestitanium carbide nanoparticlescarbon nanotubes (CNT)strength-ductilitysolution coating process Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":"36 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09243046.2023.2253097","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractTo use Al composites in structural applications, we need to improve strength and ductility at the same time. In this article, we explore three main concepts to solve this problem: improving the dispersion uniformity of CNTs in Al powder without damaging its structure by solution coating technique, fabricating a hybrid composite by reinforcing Al with nano-TiC-CNT, comparing the properties of nano-TiC-CNT and micron-TiC-CNT hybrid composites. Microstructure observation by SEM, TEM, and XRD revealed well-dispersed and preserved CNTs without the formation of a second phase. The Al-0.5CNT composite showed good tensile strength and elongation at break of 278 MPa and 14%, respectively. Further improvements in tensile strength and ductility of 285 MPa and 23%, respectively, were measured after the addition of 2.5 wt%; (1.4 vol%) TiC nanoparticles to Al-0.5CNT composite. However, the introduction of 2.5 wt-% TiC macroparticles only improved the tensile strength by 48% but elongation at break was up to 32%. The improved strength and ductility are attributed to the introduction of geometrical necessary dislocation and Orowan looping of dislocations leading to back stress strengthening. The new Al composite is expected to find application in automotive and aerospace component manufacture and thermal management.Keywords: Aluminium matrix compositestitanium carbide nanoparticlescarbon nanotubes (CNT)strength-ductilitysolution coating process Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
"Advanced Composite Materials (ACM), a bi-monthly publication of the Japan Society for Composite Materials and the Korean Society for Composite Materials, provides an international forum for researchers, manufacturers and designers who are working in the field of composite materials and their structures. Issues contain articles on all aspects of current scientific and technological progress in this interdisciplinary field. The topics of interest are physical, chemical, mechanical and other properties of advanced composites as well as their constituent materials; experimental and theoretical studies relating microscopic to macroscopic behavior; testing and evaluation with emphasis on environmental effects and reliability; novel techniques of fabricating various types of composites and of forming structural components utilizing these materials; design and analysis for specific applications.
Advanced Composite Materials publishes refereed original research papers, review papers, technical papers and short notes as well as some translated papers originally published in the Journal of the Japan Society for Composite Materials. Issues also contain news items such as information on new materials and their processing."