Climate Risk and Vulnerability Assessment of Georgian Hydrology under Future Climate Change Scenarios

IF 3 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Climate Pub Date : 2023-11-02 DOI:10.3390/cli11110222
Aashutosh Aryal, Rieks Bosch, Venkataraman Lakshmi
{"title":"Climate Risk and Vulnerability Assessment of Georgian Hydrology under Future Climate Change Scenarios","authors":"Aashutosh Aryal, Rieks Bosch, Venkataraman Lakshmi","doi":"10.3390/cli11110222","DOIUrl":null,"url":null,"abstract":"The Climate Risk and Vulnerability Assessment (CRVA) is a systematic process used to identify gaps in regional climate adaptation strategies. The CRVA method assesses regional vulnerability, adaptation capacity, exposure, and sensitivity to climate change to support improved adaptation policies. This CRVA study assesses Georgia’s climate exposure, geographic sensitivity, and socio-economic sensitivity by focusing on the impacts of climate change on regional hydrology. The projected change in climate extreme indices, defined by the Expert Team on Climate Change Detection and Indices (ETCCDI), is assessed against the 1961–1990 baseline under future Representative Concentration Pathway (RCP) scenarios. These indices encompass various climate factors such as the maximum daily temperature, warmth duration, total precipitation, heavy and extreme precipitation, maximum 5-day precipitation, and consecutive drought duration. This evaluation helps us understand the potential climate exposure impacts on Georgia. The climate-induced geographic sensitivity is examined based on water stress, drought risk, and changes in soil productivity using the Normalized Difference Vegetation Index (NDVI). The climate-induced socio-economic sensitivity is determined using the Gross Domestic Product per capita (GDP), Human Development Index, Education Index, and population density. The highest vulnerability to climate change was found in the Kakheti and Kvemo Kartli regions, with the vulnerability index values ranging from 6 to 15, followed by Mtskheta-Mtianeti, Samtskhe–Javakheti, and Shida Kartli with vulnerability index values ranging from 2 to 8. The location of these regions upstream of the Alazani-Iori, Khrami-Debeda, and Mktvari river basins indicates that the country’s water resources are vulnerable to climate change impacts in the future under the RCP 4.5 and 8.5 scenarios.","PeriodicalId":37615,"journal":{"name":"Climate","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11110222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Climate Risk and Vulnerability Assessment (CRVA) is a systematic process used to identify gaps in regional climate adaptation strategies. The CRVA method assesses regional vulnerability, adaptation capacity, exposure, and sensitivity to climate change to support improved adaptation policies. This CRVA study assesses Georgia’s climate exposure, geographic sensitivity, and socio-economic sensitivity by focusing on the impacts of climate change on regional hydrology. The projected change in climate extreme indices, defined by the Expert Team on Climate Change Detection and Indices (ETCCDI), is assessed against the 1961–1990 baseline under future Representative Concentration Pathway (RCP) scenarios. These indices encompass various climate factors such as the maximum daily temperature, warmth duration, total precipitation, heavy and extreme precipitation, maximum 5-day precipitation, and consecutive drought duration. This evaluation helps us understand the potential climate exposure impacts on Georgia. The climate-induced geographic sensitivity is examined based on water stress, drought risk, and changes in soil productivity using the Normalized Difference Vegetation Index (NDVI). The climate-induced socio-economic sensitivity is determined using the Gross Domestic Product per capita (GDP), Human Development Index, Education Index, and population density. The highest vulnerability to climate change was found in the Kakheti and Kvemo Kartli regions, with the vulnerability index values ranging from 6 to 15, followed by Mtskheta-Mtianeti, Samtskhe–Javakheti, and Shida Kartli with vulnerability index values ranging from 2 to 8. The location of these regions upstream of the Alazani-Iori, Khrami-Debeda, and Mktvari river basins indicates that the country’s water resources are vulnerable to climate change impacts in the future under the RCP 4.5 and 8.5 scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未来气候变化情景下格鲁吉亚水文气候风险与脆弱性评估
气候风险与脆弱性评估(CRVA)是一个系统的过程,用于识别区域气候适应战略的差距。CRVA方法评估区域脆弱性、适应能力、暴露度和对气候变化的敏感性,以支持改进适应政策。这项CRVA研究通过关注气候变化对区域水文的影响,评估了格鲁吉亚的气候暴露、地理敏感性和社会经济敏感性。由气候变化探测和指数专家组(ETCCDI)定义的气候极端指数的预估变化是在未来代表性浓度路径(RCP)情景下,以1961-1990年基线为基准进行评估的。这些指数包括最高日气温、温暖持续时间、总降水量、强降水和极端降水、最大5天降水和连续干旱持续时间等各种气候因子。这一评估有助于我们了解气候暴露对格鲁吉亚的潜在影响。利用归一化植被指数(NDVI),基于水分胁迫、干旱风险和土壤生产力变化,研究了气候诱发的地理敏感性。气候引起的社会经济敏感性由人均国内生产总值(GDP)、人类发展指数、教育指数和人口密度确定。Kakheti和Kvemo Kartli地区对气候变化的脆弱性最高,脆弱性指数值为6 ~ 15,其次是Mtskheta-Mtianeti、samtskeh - javakheti和Shida Kartli,脆弱性指数值为2 ~ 8。这些位于Alazani-Iori、Khrami-Debeda和Mktvari河流域上游的地区的位置表明,在RCP 4.5和8.5情景下,该国的水资源在未来容易受到气候变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Climate
Climate Earth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍: Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.
期刊最新文献
Spatial and Temporal Evolution of Seasonal Sea Ice Extent of Hudson Strait, Canada, 1971–2018 Auto-Machine-Learning Models for Standardized Precipitation Index Prediction in North–Central Mexico An Analysis of Romania’s Energy Strategy: Perspectives and Developments since 2020 Taking Stock of Recent Progress in Livelihood Vulnerability Assessments to Climate Change in the Developing World Simulating Climatic Patterns and Their Impacts on the Food Security Stability System in Jammu, Kashmir and Adjoining Regions, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1