{"title":"In-plane shear behaviour of concrete sandwich panels reinforced with various geogrids","authors":"Upender Bishnoi, A. B. Danie Roy, Naveen Kwatra","doi":"10.1080/19648189.2023.2276141","DOIUrl":null,"url":null,"abstract":"AbstractSeismic occurrences have caused severe damage and even the collapse of fragile unreinforced masonry structures. New technologies are replacing these conventional methods of construction; concrete sandwich panels (CSP) are one such technique gaining popularity. In-plane diagonal shear strength of concrete sandwich panels is studied experimentally, and the effect of incorporating geogrids on the deformation capability and load-bearing capacity is reported. Two forms of geogrid material, plastic uniaxial geogrid (PUG) and polyester biaxial geogrids (PBG2 and PBG3) are used to improve the strength and ductility of concrete sandwich panels. Diagonal compression tests have been carried out better to understand the behavior of CSP under in-plane strength. This paper also discusses the effect of the different mixes, the effect of geogrids, load-deformation behaviour, shear capacity, deflection ductility factor, mode of failure, shear strength, and energy dissipation. In contrast to the control specimen, specimens cast with plastic geogrid had a 13.7% and 26% improvement in shear capacity and load-bearing capability for the two types of micro-concrete mixes used in this study. The conclusion reached is that plastic uniaxial geogrid is effective in improving the concrete sandwich panels’ load-bearing capacity, shear capacity, and deformation ability. Polyester biaxial geogrids enhanced the ductility of the concrete sandwich panels.Keywords: Concrete sandwich panelIn-plane diagonal compressiongeogridsenergy dissipation Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author, upon reasonable request.","PeriodicalId":11970,"journal":{"name":"European Journal of Environmental and Civil Engineering","volume":"26 12","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Environmental and Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19648189.2023.2276141","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractSeismic occurrences have caused severe damage and even the collapse of fragile unreinforced masonry structures. New technologies are replacing these conventional methods of construction; concrete sandwich panels (CSP) are one such technique gaining popularity. In-plane diagonal shear strength of concrete sandwich panels is studied experimentally, and the effect of incorporating geogrids on the deformation capability and load-bearing capacity is reported. Two forms of geogrid material, plastic uniaxial geogrid (PUG) and polyester biaxial geogrids (PBG2 and PBG3) are used to improve the strength and ductility of concrete sandwich panels. Diagonal compression tests have been carried out better to understand the behavior of CSP under in-plane strength. This paper also discusses the effect of the different mixes, the effect of geogrids, load-deformation behaviour, shear capacity, deflection ductility factor, mode of failure, shear strength, and energy dissipation. In contrast to the control specimen, specimens cast with plastic geogrid had a 13.7% and 26% improvement in shear capacity and load-bearing capability for the two types of micro-concrete mixes used in this study. The conclusion reached is that plastic uniaxial geogrid is effective in improving the concrete sandwich panels’ load-bearing capacity, shear capacity, and deformation ability. Polyester biaxial geogrids enhanced the ductility of the concrete sandwich panels.Keywords: Concrete sandwich panelIn-plane diagonal compressiongeogridsenergy dissipation Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author, upon reasonable request.
期刊介绍:
The European Research Area has now become a reality. The prime objective of the EJECE is to fully document advances in International scientific and technical research in the fields of sustainable construction and soil engineering. In particular regard to the latter, the environmental preservation of natural media (soils and rocks) and the mitigation of soil-related risks are now not only major societal challenges, but they are also the source of scientific and technical developments that could be extremely beneficial.