On inference in high-dimensional logistic regression models with separated data

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-11-02 DOI:10.1093/biomet/asad065
R M Lewis, H S Battey
{"title":"On inference in high-dimensional logistic regression models with separated data","authors":"R M Lewis, H S Battey","doi":"10.1093/biomet/asad065","DOIUrl":null,"url":null,"abstract":"Abstract Direct use of the likelihood function typically produces severely biased estimates when the dimension of the parameter vector is large relative to the effective sample size. With linearly separable data generated from a logistic regression model, the loglikelihood function asymptotes and the maximum likelihood estimator does not exist. We show that an exact analysis for each regression coefficient produces half-infinite confidence sets for some parameters when the data are separable. Such conclusions are not vacuous, but an honest portrayal of the limitations of the data. Finite confidence sets are only achievable when additional, perhaps implicit, assumptions are made. Under a notional double-asymptotic regime in which the dimension of the logistic coefficient vector increases with the sample size, the present paper considers the implications of enforcing a natural constraint on the vector of logistic-transformed probabilities. We derive a relationship between the logistic coefficients and a notional parameter obtained as a probability limit of an ordinary least squares estimator. The latter exists even when the data are separable. Consistency is ascertained under weak conditions on the design matrix.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Direct use of the likelihood function typically produces severely biased estimates when the dimension of the parameter vector is large relative to the effective sample size. With linearly separable data generated from a logistic regression model, the loglikelihood function asymptotes and the maximum likelihood estimator does not exist. We show that an exact analysis for each regression coefficient produces half-infinite confidence sets for some parameters when the data are separable. Such conclusions are not vacuous, but an honest portrayal of the limitations of the data. Finite confidence sets are only achievable when additional, perhaps implicit, assumptions are made. Under a notional double-asymptotic regime in which the dimension of the logistic coefficient vector increases with the sample size, the present paper considers the implications of enforcing a natural constraint on the vector of logistic-transformed probabilities. We derive a relationship between the logistic coefficients and a notional parameter obtained as a probability limit of an ordinary least squares estimator. The latter exists even when the data are separable. Consistency is ascertained under weak conditions on the design matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分离数据的高维逻辑回归模型的推理
当参数向量的维数相对于有效样本量较大时,直接使用似然函数通常会产生严重的偏估计。对于由逻辑回归模型产生的线性可分数据,对数似然函数渐近且最大似然估计量不存在。我们表明,当数据可分离时,对每个回归系数的精确分析对某些参数产生半无限置信集。这样的结论不是空洞的,而是对数据局限性的诚实描述。有限的置信集只有在做出额外的(可能是隐含的)假设时才能实现。在逻辑系数向量的维数随样本量的增加而增加的概念双渐近状态下,本文考虑了对逻辑变换概率向量施加自然约束的含义。我们推导了逻辑系数与作为普通最小二乘估计的概率极限的一个概念参数之间的关系。即使数据是可分离的,后者也存在。在弱条件下确定了设计矩阵的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Skip-sampling: subsampling in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1