Enhancing Anomaly-Based Intrusion Detection Systems: A Hybrid Approach Integrating Feature Selection and Bayesian Hyperparameter Optimization

Q3 Computer Science Ingenierie des Systemes d''Information Pub Date : 2023-10-31 DOI:10.18280/isi.280506
Naoual Berbiche, Jamila El Alami
{"title":"Enhancing Anomaly-Based Intrusion Detection Systems: A Hybrid Approach Integrating Feature Selection and Bayesian Hyperparameter Optimization","authors":"Naoual Berbiche, Jamila El Alami","doi":"10.18280/isi.280506","DOIUrl":null,"url":null,"abstract":"In the dynamically evolving landscape of cybersecurity, safeguarding IT infrastructures has emerged as an imperative to thwart the escalation of cyber-attacks. Anomaly-based Intrusion Detection Systems (IDS) play a pivotal role in identifying aberrant behaviours that elude conventional detection mechanisms. Nonetheless, these systems are not without their shortcomings, manifesting as elevated false alarm rates and a diminished efficacy in detecting sophisticated attacks. In response to these challenges, a hybrid approach, entailing Machine Learning (ML) techniques, was employed to augment the performance of anomaly-based IDS in terms of detection accuracy, False Positive (FP) Rate, and detection time. The approach encompassed a two-fold optimization strategy: initial feature selection predicated on feature importance derived from the XGBoost classifier, followed by Bayesian optimization (BO) for hyperparameter tuning. The optimization was conducted with respect to two objective functions, namely the ROC-AUC score and the Average Precision score, each serving to identify the optimal hyperparameters for their respective maximization. Classifiers, including Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Stochastic Gradient Descent (SGD), were subjected to training under configurations encompassing both the hyperparameters resultant from BO and the default hyperparameters, the latter serving as reference models. Evaluation, conducted through a multifaceted metric analysis, substantiated the superiority of the optimized models over their reference counterparts, with the optimized XGBoost models demonstrating the most commendable performance. This paradigm offers a promising avenue for enhancing detection precision and mitigating false alarms, thereby fortifying the security of computer","PeriodicalId":38604,"journal":{"name":"Ingenierie des Systemes d''Information","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenierie des Systemes d''Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/isi.280506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

In the dynamically evolving landscape of cybersecurity, safeguarding IT infrastructures has emerged as an imperative to thwart the escalation of cyber-attacks. Anomaly-based Intrusion Detection Systems (IDS) play a pivotal role in identifying aberrant behaviours that elude conventional detection mechanisms. Nonetheless, these systems are not without their shortcomings, manifesting as elevated false alarm rates and a diminished efficacy in detecting sophisticated attacks. In response to these challenges, a hybrid approach, entailing Machine Learning (ML) techniques, was employed to augment the performance of anomaly-based IDS in terms of detection accuracy, False Positive (FP) Rate, and detection time. The approach encompassed a two-fold optimization strategy: initial feature selection predicated on feature importance derived from the XGBoost classifier, followed by Bayesian optimization (BO) for hyperparameter tuning. The optimization was conducted with respect to two objective functions, namely the ROC-AUC score and the Average Precision score, each serving to identify the optimal hyperparameters for their respective maximization. Classifiers, including Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Stochastic Gradient Descent (SGD), were subjected to training under configurations encompassing both the hyperparameters resultant from BO and the default hyperparameters, the latter serving as reference models. Evaluation, conducted through a multifaceted metric analysis, substantiated the superiority of the optimized models over their reference counterparts, with the optimized XGBoost models demonstrating the most commendable performance. This paradigm offers a promising avenue for enhancing detection precision and mitigating false alarms, thereby fortifying the security of computer
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强基于异常的入侵检测系统:融合特征选择和贝叶斯超参数优化的混合方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ingenierie des Systemes d''Information
Ingenierie des Systemes d''Information Computer Science-Information Systems
CiteScore
2.50
自引率
0.00%
发文量
84
期刊最新文献
An Information Algorithm: Advancing Financial Intelligence Management for Economic Security Predicting Used-Vehicle Resale Value in Developing Markets: Application of Machine Learning Models to the Kazakhstan Car Market An ID3 Decision Tree Algorithm-Based Model for Predicting Student Performance Using Comprehensive Student Selection Data at Telkom University Improving Spell Checker Performance for Bahasa Indonesia Using Text Preprocessing Techniques with Deep Learning Models Leveraging Text Mining for Analyzing Students' Preferences in Computer Science and Language Courses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1