Jing Wei Teoh, Wei Lin Teoh, Michael B.C. Khoo, Giovanni Celano, Zhi Lin Chong
{"title":"Optimal designs of the omnibus SPRT control chart for joint monitoring of process mean and dispersion","authors":"Jing Wei Teoh, Wei Lin Teoh, Michael B.C. Khoo, Giovanni Celano, Zhi Lin Chong","doi":"10.1080/00207543.2023.2254855","DOIUrl":null,"url":null,"abstract":"The vast majority of control schemes related to the sequential probability ratio test (SPRT) are designed for the purpose of monitoring only the process mean. Nonetheless, most manufacturing processes are vulnerable to external factors that cause the process mean and variability to change simultaneously. It is, therefore, crucial to consider a joint scheme for monitoring both the location and scale parameters of a production process. In this article, we develop a scheme that combines both mean and variance information in a single SPRT, known as the omnibus SPRT (OSPRT) chart. Expressions for the run-length properties of the OSPRT chart are derived by means of the Markov chain approach. We also propose optimal designs for the OSPRT chart based on two different metrics, i.e. by minimising the average time to signal and the average extra quadratic loss. Through a comprehensive analysis, this article reveals that the optimal OSPRT chart outperforms the classical X¯-S, weighted-loss cumulative sum, absolute-value SPRT, and two maximum weighted-moving-average-type charts. The optimal OSPRT chart also has the advantage of collecting a small number of samples on average before producing a decision. Finally, the implementation of the OSPRT chart is presented with a wire bonding industrial dataset.","PeriodicalId":14307,"journal":{"name":"International Journal of Production Research","volume":"69 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00207543.2023.2254855","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The vast majority of control schemes related to the sequential probability ratio test (SPRT) are designed for the purpose of monitoring only the process mean. Nonetheless, most manufacturing processes are vulnerable to external factors that cause the process mean and variability to change simultaneously. It is, therefore, crucial to consider a joint scheme for monitoring both the location and scale parameters of a production process. In this article, we develop a scheme that combines both mean and variance information in a single SPRT, known as the omnibus SPRT (OSPRT) chart. Expressions for the run-length properties of the OSPRT chart are derived by means of the Markov chain approach. We also propose optimal designs for the OSPRT chart based on two different metrics, i.e. by minimising the average time to signal and the average extra quadratic loss. Through a comprehensive analysis, this article reveals that the optimal OSPRT chart outperforms the classical X¯-S, weighted-loss cumulative sum, absolute-value SPRT, and two maximum weighted-moving-average-type charts. The optimal OSPRT chart also has the advantage of collecting a small number of samples on average before producing a decision. Finally, the implementation of the OSPRT chart is presented with a wire bonding industrial dataset.
期刊介绍:
The International Journal of Production Research (IJPR), published since 1961, is a well-established, highly successful and leading journal reporting manufacturing, production and operations management research.
IJPR is published 24 times a year and includes papers on innovation management, design of products, manufacturing processes, production and logistics systems. Production economics, the essential behaviour of production resources and systems as well as the complex decision problems that arise in design, management and control of production and logistics systems are considered.
IJPR is a journal for researchers and professors in mechanical engineering, industrial and systems engineering, operations research and management science, and business. It is also an informative reference for industrial managers looking to improve the efficiency and effectiveness of their production systems.