{"title":"In silico identification of cadmium binding protein and its secreted metalloproteins in Stenotrophomonas maltophilia","authors":"Nandhana Ganapathy Salini, Rikhia Majumdar, Shahjahan Ahamad, Shobana Sugumar","doi":"10.2174/2212796817666230911094043","DOIUrl":null,"url":null,"abstract":"background: Stenotrophomonas maltophilia is a pathogenic bacteria that causes serious infectious complications in humans, especially in immune-compromised patients. Stenotrophomonas maltophilia is a gram-negative bacterium that is multidrug-resistant. objective: The purpose of the study is to understand the diverse cellular and biological functions of cadmium-binding metalloproteins and to predict their role in pathogenicity, regulation, and growth. methodology: Different in silico approaches were used to check the Functional Annotation, Subcellular Localization, Gene Ontology, and Bacterial toxin prediction have been used to identify the cellular and biological function of Cd-binding metalloproteins in Stenotrophomonas maltophilia. results: Identified 116 Cd-binding proteins from the whole proteome sequence and functional domain, family, localization, and toxicity were also studied. conclusion: The outcomes revealed that this study could be used in understanding the 116 cadmium-binding proteins from the whole proteome sequence. This study shows the survival, growth, and pathogenicity of the bacteria.","PeriodicalId":10784,"journal":{"name":"Current Chemical Biology","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2212796817666230911094043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
background: Stenotrophomonas maltophilia is a pathogenic bacteria that causes serious infectious complications in humans, especially in immune-compromised patients. Stenotrophomonas maltophilia is a gram-negative bacterium that is multidrug-resistant. objective: The purpose of the study is to understand the diverse cellular and biological functions of cadmium-binding metalloproteins and to predict their role in pathogenicity, regulation, and growth. methodology: Different in silico approaches were used to check the Functional Annotation, Subcellular Localization, Gene Ontology, and Bacterial toxin prediction have been used to identify the cellular and biological function of Cd-binding metalloproteins in Stenotrophomonas maltophilia. results: Identified 116 Cd-binding proteins from the whole proteome sequence and functional domain, family, localization, and toxicity were also studied. conclusion: The outcomes revealed that this study could be used in understanding the 116 cadmium-binding proteins from the whole proteome sequence. This study shows the survival, growth, and pathogenicity of the bacteria.
期刊介绍:
Current Chemical Biology aims to publish full-length and mini reviews on exciting new developments at the chemistry-biology interface, covering topics relating to Chemical Synthesis, Science at Chemistry-Biology Interface and Chemical Mechanisms of Biological Systems. Current Chemical Biology covers the following areas: Chemical Synthesis (Syntheses of biologically important macromolecules including proteins, polypeptides, oligonucleotides, oligosaccharides etc.; Asymmetric synthesis; Combinatorial synthesis; Diversity-oriented synthesis; Template-directed synthesis; Biomimetic synthesis; Solid phase biomolecular synthesis; Synthesis of small biomolecules: amino acids, peptides, lipids, carbohydrates and nucleosides; and Natural product synthesis).