Liang Sun, Pengsheng Wang, Paiying Liu, Zhengang Nie
{"title":"Image Processing Method of a Visual Communication System Based on Convolutional Neural Network","authors":"Liang Sun, Pengsheng Wang, Paiying Liu, Zhengang Nie","doi":"10.4018/ijswis.330022","DOIUrl":null,"url":null,"abstract":"Unmanned motion platforms are being used in a wide range of industries. Unmanned motion platforms must have an autonomous and intelligent navigation procedure in order to carry out their system functions. Traditional inertial navigation and radio navigation have poor accuracy and autonomy when not dependent on satellite circumstances. The accuracy of image recognition algorithms must meet strict standards. This study and exploration of the high-precision scene image recognition system is based on convolutional neural network structure optimization. To demonstrate the viability of the approach, simulation experiments are carried out on the NUC dataset using the recognition technique based on a convolutional neural network that is proposed. The fundamental network architecture of a convolutional neural network is optimized using the L2 regularization technique. The experimental findings demonstrate that the NUC dataset now has better recognition accuracy. In terms of recognition accuracy, the suggested method satisfies the predetermined requirements.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"7 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.330022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned motion platforms are being used in a wide range of industries. Unmanned motion platforms must have an autonomous and intelligent navigation procedure in order to carry out their system functions. Traditional inertial navigation and radio navigation have poor accuracy and autonomy when not dependent on satellite circumstances. The accuracy of image recognition algorithms must meet strict standards. This study and exploration of the high-precision scene image recognition system is based on convolutional neural network structure optimization. To demonstrate the viability of the approach, simulation experiments are carried out on the NUC dataset using the recognition technique based on a convolutional neural network that is proposed. The fundamental network architecture of a convolutional neural network is optimized using the L2 regularization technique. The experimental findings demonstrate that the NUC dataset now has better recognition accuracy. In terms of recognition accuracy, the suggested method satisfies the predetermined requirements.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.