People Counter Using SSD MobileNet V2 and Deep SORT Based Object Tracking in Embedded Environment

Yeonwoo Hwang, Jaewon Ki, Quoc Toan Nguyen, Xuan Dung To, Van Lang Nhu, Minh Nguyen Nguyen, Keeseong Lee
{"title":"People Counter Using SSD MobileNet V2 and Deep SORT Based Object Tracking in Embedded Environment","authors":"Yeonwoo Hwang, Jaewon Ki, Quoc Toan Nguyen, Xuan Dung To, Van Lang Nhu, Minh Nguyen Nguyen, Keeseong Lee","doi":"10.5391/jkiis.2023.33.4.368","DOIUrl":null,"url":null,"abstract":"최근 팬데믹(Pandemic)으로 인하여 감염병 예방을 위하여 여러 연구가 시도되고 있다. 밀폐된 공간에 얼마나 많은 인원이 오고 가는 지에 대한 통계적 데이터는 감염병 예방을 위한 매우 중요한 척도이다. 이에 따라 특정한 공간에서 유동인구를 세는 기술인 피플 카운팅(People Counting)을 이용한 피플 카운터(People Counter)의 수요가 매우 늘게 되었다. 본 논문에서는 딥러닝을 이용한 객체 추적 모델로 임베디드 기기에서도 실시간으로 작동 가능한 피플 카운터 개발을 연구 목적으로 한다. 객체 추적 모델은 객체 감지 모델과 Deep SORT 객체 추적 알고리즘을 결합하였고, 감지 모델로 계산 속도가 빨라 임베디드 환경에 적합한 경량화된 SSD MobileNet V2를 사용하였다. 개발된 피플 카운터는 밀폐된 공간에서 출입구 주변 객체를 추적하며 카운팅하고, 실시간 동작이 가능함을 확인하였다.","PeriodicalId":17349,"journal":{"name":"Journal of The Korean Institute of Intelligent Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Korean Institute of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5391/jkiis.2023.33.4.368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

최근 팬데믹(Pandemic)으로 인하여 감염병 예방을 위하여 여러 연구가 시도되고 있다. 밀폐된 공간에 얼마나 많은 인원이 오고 가는 지에 대한 통계적 데이터는 감염병 예방을 위한 매우 중요한 척도이다. 이에 따라 특정한 공간에서 유동인구를 세는 기술인 피플 카운팅(People Counting)을 이용한 피플 카운터(People Counter)의 수요가 매우 늘게 되었다. 본 논문에서는 딥러닝을 이용한 객체 추적 모델로 임베디드 기기에서도 실시간으로 작동 가능한 피플 카운터 개발을 연구 목적으로 한다. 객체 추적 모델은 객체 감지 모델과 Deep SORT 객체 추적 알고리즘을 결합하였고, 감지 모델로 계산 속도가 빨라 임베디드 환경에 적합한 경량화된 SSD MobileNet V2를 사용하였다. 개발된 피플 카운터는 밀폐된 공간에서 출입구 주변 객체를 추적하며 카운팅하고, 실시간 동작이 가능함을 확인하였다.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在嵌入式环境中使用SSD MobileNet V2和基于深度排序的对象跟踪的人员计数器
最近为了预防因Pandemic引起的传染病,正在进行多种研究。在密闭空间里有多少人来往的统计数据是预防传染病的重要尺度。因此,利用在特定空间内计算流动人口的“People Counting”技术的“People Counter”的需求将大幅增加。本论文的研究目的是开发利用深度学习的对象追踪模型,在嵌入式机器上也能实时启动的“人物计数器”。对象追踪模型结合了对象感知模型和Deep SORT对象追踪算法,作为感知模型使用了计算速度快、适合嵌入式环境的轻量化SSD MobileNet V2。开发的people counter在密闭空间中追踪、指导出入口周围的客体,并确认其实时动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on U-Net based Deblurring Stability for Autonomous Operation Comparison of Deep learning based Semantic Segmentation Model for Offroad Self-driving Solving the C-Shaped Ring Type Patience Cube as Planning Problem Addressing Class Imbalance in Multiple Causal Relations and Keyword Network for Maritime Safety Management A Real-time System for Judging Vehicle Loads and Overloaded using Yolo with Post-Processing Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1