{"title":"Investigations on Alkali Treated Modified Fibers of Desert Plant Prosopis juliflora","authors":"Deepshikha yadav, G.P. Singh","doi":"10.12944/cwe.18.2.36","DOIUrl":null,"url":null,"abstract":"The development of natural fiber reinforced composite material is increasing at very fast rate due to their eco-friendly and biodegradable nature. NFCs natural fiber reinforced composites have various properties such as low cost, low density, recyclability, renewability and good physical and mechanical strength. NFCs have wide range of applications such as in automobile, sports, aerospace, marine, home appliances and in building construction. In this paper we used prosopis juliflora desert plant fibers as a filler to make biodegradable composites and alkali treatment was done to modification of fiber in order to make high strength composites materials. By using scanning electron microscopy (SEM), water absorption tests, and Fourier transform infrared spectroscopy (FTIR), this paper examines the effects of surface modification on the fibers. By conducting SEM analysis it has been observed that the chemical treatment of fibers can improve adhesion of the composites. Water absorption test concluded that due to the higher porosity and better surface energy of the treated fiber it had a higher rate of water absorption than the untreated fibers. FTIR results concluded that due to more crystalline structure and more ordered structure crystallinity index of the treated fibers increases compared to untreated fibers. FTIR results proves that TCI total crystallinity index and the LOI lateral order index is high for PJ treated fibers as compared to untreated PJ fibers.","PeriodicalId":10878,"journal":{"name":"Current World Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current World Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12944/cwe.18.2.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of natural fiber reinforced composite material is increasing at very fast rate due to their eco-friendly and biodegradable nature. NFCs natural fiber reinforced composites have various properties such as low cost, low density, recyclability, renewability and good physical and mechanical strength. NFCs have wide range of applications such as in automobile, sports, aerospace, marine, home appliances and in building construction. In this paper we used prosopis juliflora desert plant fibers as a filler to make biodegradable composites and alkali treatment was done to modification of fiber in order to make high strength composites materials. By using scanning electron microscopy (SEM), water absorption tests, and Fourier transform infrared spectroscopy (FTIR), this paper examines the effects of surface modification on the fibers. By conducting SEM analysis it has been observed that the chemical treatment of fibers can improve adhesion of the composites. Water absorption test concluded that due to the higher porosity and better surface energy of the treated fiber it had a higher rate of water absorption than the untreated fibers. FTIR results concluded that due to more crystalline structure and more ordered structure crystallinity index of the treated fibers increases compared to untreated fibers. FTIR results proves that TCI total crystallinity index and the LOI lateral order index is high for PJ treated fibers as compared to untreated PJ fibers.