Multi-Label Classification for Corporate Review Text : A Local Grammar Approach

HyeYeon Baek, Young Kyun Chang
{"title":"Multi-Label Classification for Corporate Review Text : A Local Grammar Approach","authors":"HyeYeon Baek, Young Kyun Chang","doi":"10.14329/isr.2023.25.3.027","DOIUrl":null,"url":null,"abstract":"최근 많은 분야에서 기계학습에 대한 연구가 활발히 진행되고 있는데, 상당수의 연구들이 학습 모델의 성능을 개선하는 최신 방법론을 제시하고 있다. 본 연구에서는 방법론의 개발 못지않게 기계학습에 투입되는 훈련용 데이터의 ‘품질’을 개선하는 것 역시 중요하다는 점에 착안하여, 코퍼스 분석에서 자주 사용되는 ‘부분 문법’ 처리 프로세스를 통해 훈련 데이터의 품질을 향상시키는 방법을 제시한다. 우리나라 100대 기업에 근무하는 재직자들이 채용플랫폼에 게시하는 방대한 양의 비정형 기업 리뷰 텍스트 데이터를 수집하고, 데이터 품질을 부분 문법 프로세스로 개선한 후, 부분 문법이 적용된 분류 모델이 적용되지 않은 모델보다 분류 성능이 우수함을 확인하였다. 분류 카테고리는 직원 몰입의 5가지 요인으로 상정하였는데, 국내 직장인들이 기업 리뷰가 각 유형별로 빈도에 차이가 있는지를 분석하였다. 추가로 리뷰 양상이 코로나 팬데믹 전후로 어떠한 변화가 있었는지도 분석하였다. 본 연구를 통해 국내 직장인들의 생생한 일터 경험들을 자동적으로 식별하고 분류하여, 이직을 포함한 주요한 조직문화 현상의 행태와 유발 원인 등을 유추해 볼 수 있는 근거를 제공한다.","PeriodicalId":52188,"journal":{"name":"Asia Pacific Journal of Information Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pacific Journal of Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14329/isr.2023.25.3.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

최근 많은 분야에서 기계학습에 대한 연구가 활발히 진행되고 있는데, 상당수의 연구들이 학습 모델의 성능을 개선하는 최신 방법론을 제시하고 있다. 본 연구에서는 방법론의 개발 못지않게 기계학습에 투입되는 훈련용 데이터의 ‘품질’을 개선하는 것 역시 중요하다는 점에 착안하여, 코퍼스 분석에서 자주 사용되는 ‘부분 문법’ 처리 프로세스를 통해 훈련 데이터의 품질을 향상시키는 방법을 제시한다. 우리나라 100대 기업에 근무하는 재직자들이 채용플랫폼에 게시하는 방대한 양의 비정형 기업 리뷰 텍스트 데이터를 수집하고, 데이터 품질을 부분 문법 프로세스로 개선한 후, 부분 문법이 적용된 분류 모델이 적용되지 않은 모델보다 분류 성능이 우수함을 확인하였다. 분류 카테고리는 직원 몰입의 5가지 요인으로 상정하였는데, 국내 직장인들이 기업 리뷰가 각 유형별로 빈도에 차이가 있는지를 분석하였다. 추가로 리뷰 양상이 코로나 팬데믹 전후로 어떠한 변화가 있었는지도 분석하였다. 본 연구를 통해 국내 직장인들의 생생한 일터 경험들을 자동적으로 식별하고 분류하여, 이직을 포함한 주요한 조직문화 현상의 행태와 유발 원인 등을 유추해 볼 수 있는 근거를 제공한다.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
公司评论文本的多标签分类:一种局部语法方法
最近,许多领域对机器学习的研究非常活跃,许多研究提出了改善学习模型性能的最新方法论。本研究中对方法论的投入开发不亚于机器学习的训练用改善数据的“质量”也是很重要的一点,着眼,珀斯鼻子的分析中常用的“部分语法处理进程通过训练提高数据的质量提出的方法。我国在100大企业工作的在职者公布在招聘平台的庞大羊的细微企业评论文本数据收集,数据质量为部分语法进程改善后,部分语法适用于分类模式不适用比模式分类性能优秀进行了确认。分类类别假设了职员投入的5个因素,分析了国内上班族对企业评论各类型的频率是否有差异。此外,还分析了在科罗纳pandemic前后评论的变化。通过本研究,对国内上班族生动的工作经验进行自动识别和分类,提供了可以推测包括离职在内的主要组织文化现象形态和诱发原因等的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asia Pacific Journal of Information Systems
Asia Pacific Journal of Information Systems Social Sciences-Sociology and Political Science
CiteScore
0.90
自引率
0.00%
发文量
29
期刊最新文献
Effects of Bring Your Own Device (BYOD) Attributes on Work-to-life Conflict An Empirical Study on the Factors Affecting the Intention to Use M2E Services Examining the Adoption of AI based Banking Chatbots : A Task Technology Fit and Network Externalities Perspective Determinants of Smartphone Conspicuous Consumption Predicting Session Conversion on E-commerce : A Deep Learning-based Multimodal Fusion Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1