A flexible triboelectric sensor based on P(VDF-co-HFP)/MXene for breath and posture monitoring in basketball motion

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Technology Pub Date : 2023-10-17 DOI:10.1080/10667857.2023.2262131
Yang Li, Dongyuan Xu
{"title":"A flexible triboelectric sensor based on P(VDF-co-HFP)/MXene for breath and posture monitoring in basketball motion","authors":"Yang Li, Dongyuan Xu","doi":"10.1080/10667857.2023.2262131","DOIUrl":null,"url":null,"abstract":"Recently, sports monitoring sensors based on flexible wearable technology have attracted much attention. Here, we reported a P(VDF-co-HFP)/MXene-based triboelectric nanogenerator (PM-TENG) to harvest bio-mechanical energy. The introduction of MXene can significantly improve the dielectric constant of P(VDF-co-HFP), thereby achieving higher electron harvesting ability. The PM-TENG can obtain the maximum instantaneous power of 1.68 mW contacted with a resistance of 4 MΩ. Furthermore, the PM-TENG can be also integrated inside the mask to monitor changes in respiratory status before and after basketball exercise. Meanwhile, the PM-TENG installed inside the shoes can be used to distinguish different gaits in basketball, which will be used to assist in basketball training. This flexible sport sensor demonstrates potential application value in basketball training assistance.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"4 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2262131","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, sports monitoring sensors based on flexible wearable technology have attracted much attention. Here, we reported a P(VDF-co-HFP)/MXene-based triboelectric nanogenerator (PM-TENG) to harvest bio-mechanical energy. The introduction of MXene can significantly improve the dielectric constant of P(VDF-co-HFP), thereby achieving higher electron harvesting ability. The PM-TENG can obtain the maximum instantaneous power of 1.68 mW contacted with a resistance of 4 MΩ. Furthermore, the PM-TENG can be also integrated inside the mask to monitor changes in respiratory status before and after basketball exercise. Meanwhile, the PM-TENG installed inside the shoes can be used to distinguish different gaits in basketball, which will be used to assist in basketball training. This flexible sport sensor demonstrates potential application value in basketball training assistance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于P(VDF-co-HFP)/MXene的柔性摩擦电传感器,用于篮球运动中的呼吸和姿势监测
近年来,基于柔性可穿戴技术的运动监测传感器备受关注。在这里,我们报道了一种基于P(VDF-co-HFP)/ mxeni的摩擦电纳米发电机(PM-TENG)来收集生物机械能。MXene的引入可以显著提高P(VDF-co-HFP)的介电常数,从而获得更高的电子捕获能力。PM-TENG在接触电阻4 MΩ时可获得1.68 mW的最大瞬时功率。此外,PM-TENG还可以集成在口罩内,监测篮球运动前后呼吸状态的变化。同时,安装在球鞋内的PM-TENG可用于区分篮球运动中的不同步态,辅助篮球训练。该柔性运动传感器在篮球辅助训练中具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Technology
Materials Technology 工程技术-材料科学:综合
CiteScore
6.00
自引率
9.70%
发文量
105
审稿时长
8.7 months
期刊介绍: Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.
期刊最新文献
Fabrication and development of biogenic selenium nanoparticles incorporated alginate hydrogel wound care material: a pre-clinical study Biopolymer-coated magnesium-alloy-based multi-functional bio-nanocomposite scaffolds Enhancing anticancer efficacy: xovoltib-loaded chitosan-tripolyphosphate nanoparticles for targeted drug delivery against MCF-7 breast cancer cells One Pot Synthesis, characterization, morphology and optical profilometry properties of La-doped and La–Ag-doped cobalt oxide nanoparticles Supercritical hydrothermal synthesis of ultra-fine Cu powders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1