Phylogenetic reconstruction of Corydioidea (Dictyoptera: Blattodea) provides new insights on the placement of Latindiinae and supports the proposal of the new subfamily Ctenoneurinae
Wei Han, Lu Qiu, Jiawei Zhang, Zongqing Wang, Yanli Che
{"title":"Phylogenetic reconstruction of Corydioidea (Dictyoptera: Blattodea) provides new insights on the placement of Latindiinae and supports the proposal of the new subfamily Ctenoneurinae","authors":"Wei Han, Lu Qiu, Jiawei Zhang, Zongqing Wang, Yanli Che","doi":"10.1111/syen.12610","DOIUrl":null,"url":null,"abstract":"<p>Representatives of the cockroach superfamily Corydioidea are less sampled than members of the two other cockroach superfamilies (Blaberoidea and Blattoidea) due to the difficulty of collecting them in the field, accentuated by a general lack of knowledge on their biology. Their evolutionary relationships have not yet been investigated with a relevant sampling and are therefore poorly known. Here, we assess the phylogenetic relationships of 35 Corydioidea species with mitochondrial genomes and two nuclear gene fragments. Our sampling for Corydiidae comprises Corydiinae and Euthyrrhaphinae representatives, whereas our sampling for the remaining Corydioidea includes species belonging to genera <i>Beybienkonus</i> Qiu, Wang and Che, <i>Compsodes</i> Hebard, <i>Ctenoneura</i> Hanitsch and <i>Nocticola</i> Bolívar. We further infer their divergence times with molecular dating analyses relying on five fossil calibrations. We also carry out reconstructions of ancestral character states for 11 phenotypic and one biological traits. Our results recover two major Corydioidea clades, one consisting solely of Corydiidae (except Latindiinae) and the other of all remaining Corydioidea taxa. Based on the results of phylogenetic analyses, an updated classification of extant Corydioidea is proposed, where Latindiinae Handlirsch <b>stat.rev.</b> and Ctenoneurinae Qiu and Che, <b>subfam.nov.</b> are assigned to the family Nocticolidae Bolívar <b>sensu nov</b>. A new genus <i>Pseudoeupolyphaga</i> Qiu and Che, <b>gen.nov.</b> is also established within Corydiinae. Both the origin of crown Corydioidea and the divergence of the two major lineages are estimated to have occurred during the Triassic–Jurassic boundary. Ancestral character state reconstruction analyses also suggest an adaptive relationship between phenotypic characteristics and habitat preferences.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/syen.12610","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Representatives of the cockroach superfamily Corydioidea are less sampled than members of the two other cockroach superfamilies (Blaberoidea and Blattoidea) due to the difficulty of collecting them in the field, accentuated by a general lack of knowledge on their biology. Their evolutionary relationships have not yet been investigated with a relevant sampling and are therefore poorly known. Here, we assess the phylogenetic relationships of 35 Corydioidea species with mitochondrial genomes and two nuclear gene fragments. Our sampling for Corydiidae comprises Corydiinae and Euthyrrhaphinae representatives, whereas our sampling for the remaining Corydioidea includes species belonging to genera Beybienkonus Qiu, Wang and Che, Compsodes Hebard, Ctenoneura Hanitsch and Nocticola Bolívar. We further infer their divergence times with molecular dating analyses relying on five fossil calibrations. We also carry out reconstructions of ancestral character states for 11 phenotypic and one biological traits. Our results recover two major Corydioidea clades, one consisting solely of Corydiidae (except Latindiinae) and the other of all remaining Corydioidea taxa. Based on the results of phylogenetic analyses, an updated classification of extant Corydioidea is proposed, where Latindiinae Handlirsch stat.rev. and Ctenoneurinae Qiu and Che, subfam.nov. are assigned to the family Nocticolidae Bolívar sensu nov. A new genus Pseudoeupolyphaga Qiu and Che, gen.nov. is also established within Corydiinae. Both the origin of crown Corydioidea and the divergence of the two major lineages are estimated to have occurred during the Triassic–Jurassic boundary. Ancestral character state reconstruction analyses also suggest an adaptive relationship between phenotypic characteristics and habitat preferences.
期刊介绍:
Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.