A novel meso-damage constitutive model of rock under true triaxial stress with three-dimensional cracking strength, threshold and closure effect

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Damage Mechanics Pub Date : 2023-10-17 DOI:10.1177/10567895231204631
Zhi Zheng, Jiaju Zhou, Junhong Li, Honghui Tao, Xiaofeng Han, Hongyu Xu, Qiang Zhang
{"title":"A novel meso-damage constitutive model of rock under true triaxial stress with three-dimensional cracking strength, threshold and closure effect","authors":"Zhi Zheng, Jiaju Zhou, Junhong Li, Honghui Tao, Xiaofeng Han, Hongyu Xu, Qiang Zhang","doi":"10.1177/10567895231204631","DOIUrl":null,"url":null,"abstract":"Deep underground engineering is in a true three-dimensional stress state, and the adjustment of the three-dimensional stress state caused by engineering excavation will induce the fracture or even instability of the surrounding rock. However, three-dimensional mechanical model research suitable for the stability analysis of deep surrounding rock is very scarce. Therefore, a series of tests under different true triaxial stresses on two rocks (rhyodacite and marble) were conducted, and the characteristic strength (crack stable propagation initiation stress, crack unstable propagation initiation stress and peak strength) and deformation characteristics were further analyzed. After that, using the Lemaitre strain equivalence hypothesis and rock statistical damage theory, a new statistical damage constitutive model at true triaxial stress states was proposed, which introduced the three-dimensional strength criterion Modified Wiebols Cook to characterize the three-dimensional strength of the rock microelement. Therefore, the intermediate principal stress can be reasonably considered. The damage threshold, initial compaction effect and residual strength of the rock microelement at different true triaxial stress conditions were also considered. Then the relationships between the proposed model parameters and σ 2 and σ 3 were analyzed. Furthermore, sensitivity analysis of the influence of parameters m and F 0 in proposed model on the shape of rock stress–strain curve and peak strength was also investigated. The comparison between the results predicted by proposed model and the experimental data shows that the new model established in this study can well simulate the prepeak and postpeak deformation characteristics of rock and the intermediate principal stress effect under true triaxial stress conditions.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"72 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10567895231204631","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep underground engineering is in a true three-dimensional stress state, and the adjustment of the three-dimensional stress state caused by engineering excavation will induce the fracture or even instability of the surrounding rock. However, three-dimensional mechanical model research suitable for the stability analysis of deep surrounding rock is very scarce. Therefore, a series of tests under different true triaxial stresses on two rocks (rhyodacite and marble) were conducted, and the characteristic strength (crack stable propagation initiation stress, crack unstable propagation initiation stress and peak strength) and deformation characteristics were further analyzed. After that, using the Lemaitre strain equivalence hypothesis and rock statistical damage theory, a new statistical damage constitutive model at true triaxial stress states was proposed, which introduced the three-dimensional strength criterion Modified Wiebols Cook to characterize the three-dimensional strength of the rock microelement. Therefore, the intermediate principal stress can be reasonably considered. The damage threshold, initial compaction effect and residual strength of the rock microelement at different true triaxial stress conditions were also considered. Then the relationships between the proposed model parameters and σ 2 and σ 3 were analyzed. Furthermore, sensitivity analysis of the influence of parameters m and F 0 in proposed model on the shape of rock stress–strain curve and peak strength was also investigated. The comparison between the results predicted by proposed model and the experimental data shows that the new model established in this study can well simulate the prepeak and postpeak deformation characteristics of rock and the intermediate principal stress effect under true triaxial stress conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑三维开裂强度、阈值和闭合效应的真三轴应力下岩石细观损伤本构模型
深部地下工程处于真正的三维应力状态,工程开挖引起的三维应力状态的调整会诱发围岩断裂甚至失稳。然而,适合于深部围岩稳定性分析的三维力学模型研究非常匮乏。因此,对两种岩石(流纹石和大理岩)进行了不同真三轴应力下的一系列试验,并进一步分析了特征强度(裂纹稳定扩展起裂应力、裂纹不稳定扩展起裂应力和峰值强度)和变形特征。然后,利用Lemaitre应变等效假设和岩石统计损伤理论,提出了真三轴应力状态下的统计损伤本构模型,该模型引入了修正Wiebols Cook三维强度准则来表征岩石微单元的三维强度。因此,可以合理考虑中间主应力。同时考虑了不同真三轴应力条件下岩石微单元的损伤阈值、初始压实效应和残余强度。然后分析了模型参数与σ 2和σ 3的关系。此外,还对模型中参数m和f0对岩石应力-应变曲线形状和峰值强度的影响进行了敏感性分析。模型预测结果与试验数据的对比表明,所建立的新模型能较好地模拟真三轴应力条件下岩石峰前、峰后变形特征及中间主应力效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Use of fabric tensors in damage and healing mechanics of materials Mechanically consistent continuum damage model for anisotropic composites including damage deactivation Damage evaluation of interfacial materials based on M-integral Damage and permeability of gassy coal in loading – Unloading path Study on mechanical properties and strength criterion of mudstone under loading and unloading considering pre-peak damage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1