Parameters Identification of a Generalized Prandtl-Ishlinskii Model for a Micro-Positioning Stage Using Mutual Shape Memory Alloy Actuators

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Experimental Techniques Pub Date : 2023-10-17 DOI:10.1007/s40799-023-00680-y
H. Rahbari, A. Fathi, M. Dardel
{"title":"Parameters Identification of a Generalized Prandtl-Ishlinskii Model for a Micro-Positioning Stage Using Mutual Shape Memory Alloy Actuators","authors":"H. Rahbari,&nbsp;A. Fathi,&nbsp;M. Dardel","doi":"10.1007/s40799-023-00680-y","DOIUrl":null,"url":null,"abstract":"<div><p>Implementing smart materials as an actuator in fabricating micro-positioning systems has become pervasive in recent years. However, the application of Shape Memory Alloy (SMA) smart materials is limited due to its complex nonlinear mechanical behavior, such as asymmetric hysteresis and saturation characteristics. One of the most potent experimental-based methods of modeling these nonlinearities is the Generalized Prandtl-Ishlinskii (GPI) model. Unlike similar methods such as the Preisach model, this model is analytically invertible. This study aims to develop a micro-positioning stage and identify an experimental-based model describing the system response. The model structure is composed of two cascade sub-models. In the first sub-model, which models the actuator thermal behavior, the parameters of a linear dynamic model are identified. This sub-model predicts the actuator temperature given the electrical current. The second sub-model estimates the phase transformation and consequently the actuator displacement as a function of temperature. The GPI structure has been used for constructing the Wiener sub-model. The experimental and numerical results showed that the proposed black box model can accurately describe the system behavior, although identifying a comprehensive model to adequately describe the SMA actuator is a great challenge.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"585 - 597"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-023-00680-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Implementing smart materials as an actuator in fabricating micro-positioning systems has become pervasive in recent years. However, the application of Shape Memory Alloy (SMA) smart materials is limited due to its complex nonlinear mechanical behavior, such as asymmetric hysteresis and saturation characteristics. One of the most potent experimental-based methods of modeling these nonlinearities is the Generalized Prandtl-Ishlinskii (GPI) model. Unlike similar methods such as the Preisach model, this model is analytically invertible. This study aims to develop a micro-positioning stage and identify an experimental-based model describing the system response. The model structure is composed of two cascade sub-models. In the first sub-model, which models the actuator thermal behavior, the parameters of a linear dynamic model are identified. This sub-model predicts the actuator temperature given the electrical current. The second sub-model estimates the phase transformation and consequently the actuator displacement as a function of temperature. The GPI structure has been used for constructing the Wiener sub-model. The experimental and numerical results showed that the proposed black box model can accurately describe the system behavior, although identifying a comprehensive model to adequately describe the SMA actuator is a great challenge.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用互形记忆合金致动器的微定位平台的广义普朗特-伊什林斯基模型的参数识别
近年来,将智能材料作为致动器用于制造微定位系统已变得十分普遍。然而,由于形状记忆合金(SMA)智能材料具有复杂的非线性机械行为,如非对称滞后和饱和特性,其应用受到了限制。广义普朗特-伊什林斯基(GPI)模型是基于实验对这些非线性特性进行建模的最有效方法之一。与 Preisach 模型等类似方法不同的是,该模型在分析上是可逆的。本研究旨在开发一个微型定位台,并确定一个基于实验的描述系统响应的模型。模型结构由两个级联子模型组成。第一个子模型是致动器热行为模型,确定了线性动态模型的参数。该子模型根据电流预测致动器的温度。第二个子模型估算相变,进而估算作为温度函数的致动器位移。维纳子模型采用 GPI 结构。实验和数值结果表明,所提出的黑盒模型能够准确描述系统行为,尽管确定一个全面的模型来充分描述 SMA 激励器是一项巨大的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Techniques
Experimental Techniques 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
88
审稿时长
5.2 months
期刊介绍: Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques. The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to: - Increase the knowledge of physical phenomena - Further the understanding of the behavior of materials, structures, and systems - Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.
期刊最新文献
On the Cover: Identification of Lightning Strike Damage Severity Using Pulse Thermography Through Integration of Thermal Data A Note of Gratitude from the Editor-in-Chief On the Cover: Study on Velocity Distribution on Cross-Section Flow of T-Shunt Reconstruction of Unsteady Lift Force Measurements Using Non-Dimensional Scaling Optimization Surface Microstructure Evolution and Mechanical Property Investigation of Inconel 718 Alloy Using Multiple Trimmings and WEDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1