HIGH-TEMPERATURE PROCESSES IN POWDER MATERIALS AT HIGH-VOLTAGE ELECTRIC PULSE CONSOLIDATION

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY High Temperature Material Processes Pub Date : 2023-01-01 DOI:10.1615/hightempmatproc.2023046754
Evgeny Grigoryev, Oleg Kuznechik, Alexander Chumakov, Irina Nikonchuk, Evgeny Strizhakov, Stanislav Nescoromniy, Stanislav Ageev
{"title":"HIGH-TEMPERATURE PROCESSES IN POWDER MATERIALS AT HIGH-VOLTAGE ELECTRIC PULSE CONSOLIDATION","authors":"Evgeny Grigoryev, Oleg Kuznechik, Alexander Chumakov, Irina Nikonchuk, Evgeny Strizhakov, Stanislav Nescoromniy, Stanislav Ageev","doi":"10.1615/hightempmatproc.2023046754","DOIUrl":null,"url":null,"abstract":"The main features of high-voltage electric pulse consolidation (HVC) of refractory powder materials and the resulting unique capabilities of the method are considered. The electro-thermal processes of HVC at the contacts between powder particles and at the macroscale of the entire consolidated sample are analyzed. The results of experimental studies of the parameters of high-voltage electrical impulse action in the processes of consolidation of high-temperature powder compositions, high-voltage welding of dissimilar materials, as well as high-voltage discharges in liquid are presented. The results of measuring the intensity of thermal radiation of the investigated materials under high-voltage electrical impulse action, recorded by the method of pulse photometry using photodiode sensors, which, together with the Rogowski coil, are components of the measuring complex developed by the authors, are presented.","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":"121 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Material Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/hightempmatproc.2023046754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main features of high-voltage electric pulse consolidation (HVC) of refractory powder materials and the resulting unique capabilities of the method are considered. The electro-thermal processes of HVC at the contacts between powder particles and at the macroscale of the entire consolidated sample are analyzed. The results of experimental studies of the parameters of high-voltage electrical impulse action in the processes of consolidation of high-temperature powder compositions, high-voltage welding of dissimilar materials, as well as high-voltage discharges in liquid are presented. The results of measuring the intensity of thermal radiation of the investigated materials under high-voltage electrical impulse action, recorded by the method of pulse photometry using photodiode sensors, which, together with the Rogowski coil, are components of the measuring complex developed by the authors, are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粉末材料在高压电脉冲下固化的高温过程
介绍了高压电脉冲固结耐火粉末材料的主要特点,以及该方法的独特性能。分析了HVC在粉末颗粒间接触和整个固结试样宏观尺度上的电热过程。介绍了高温粉末成分固结、异种材料高压焊接以及液体高压放电过程中高压电脉冲作用参数的实验研究结果。本文介绍了利用光电二极管传感器和Rogowski线圈组成的测量复合物,用脉冲光度法测量所研究材料在高压电脉冲作用下的热辐射强度的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Temperature Material Processes
High Temperature Material Processes 工程技术-材料科学:综合
CiteScore
1.20
自引率
25.00%
发文量
31
期刊介绍: High Temperature Material Processes is an important international publication devoted to original and invited review papers on fundamental and applied re-search and new developments in materials processing and synthesis at high temperatures, especially under the plasma action as well as the treatment by laser, ion and electron beams. Processes of interest include (but not limited to) surface treatments, alloying, coatings production, nanostructures synthesis, welding, cutting, melting, re-melting and purification of metals, metallurgy (among them plasma metallurgy), powder densification, ultra-fine powder production, waste conversion and destruction. In addition, attention is paid to the development, description and study of experimental and industrial systems and devices for the implementation of high-technology plasma and beam processes. Thus, there is a broad range of coverage of experimental, analytical and numerical studies. High Temperature Material Processes will serve the needs of those who develop high temperature processes to produce materials with improved properties, surface treatments or coatings with given specifications, and will also promote connections between laboratories and industry.
期刊最新文献
Deposition of pure boron coatings by magnetron sputtering and investigation of their properties Preparation and Thermoelectric Properties of rGOBi2Te3PEDOT PSS Composite Block INFLUENCE OF BIAS VOLTAGE ON THE STRUCTURE AND MECHANICAL PROPERTIES OF Ti-Nb-C FILMS DEPOSITED BY DC DUAL MAGNETRON SPUTTERING Investigation of Zr-ZrN, Zr,Hf -(Zr,Hf)N and Zr,Nb-(Zr,Nb)N coatings deposited on a titanium alloy substrate. Modification of Ti-6Al-4V titanium alloy surface relief by compression plasma flows impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1