Advanced DEEPCNN breast cancer mammogram image detection and classification with butterfly optimisation algorithm

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2023-01-01 DOI:10.1504/ijcbdd.2023.133840
M. Suriya Priyadharsini, J.G.R. Sathiaseelan
{"title":"Advanced DEEPCNN breast cancer mammogram image detection and classification with butterfly optimisation algorithm","authors":"M. Suriya Priyadharsini, J.G.R. Sathiaseelan","doi":"10.1504/ijcbdd.2023.133840","DOIUrl":null,"url":null,"abstract":"A major aspect influencing human health is breast cancer. Mammography, fine needle aspiration, and surgical biopsy are some of the evolving diagnosis methods for this problem. Pathology images are used to diagnose breast cancer. Breast tumour surgery allows doctors to microscopically study breast tissue. Traditional methods use a cuckoo-optimised radial basis neural network. Earlier RBN algorithms handled feature extraction and reduction differently. To reduce unneeded complexity, outperform convolutional neural network (CNN) for feature extraction and classification. The Butterfly optimisation technique suggests a CNN. Zernike moments' scale, interpretation, and rotation similarity lets us bypass numerous pre-processing steps. The picture dataset was created from tumour treatment archives. The Butterfly optimisation method feeds the DCNN training data. DCNN removes, reduces, and classifies features. By determining the number of historical periods and training images for Deep CNN, optimisation improves efficiency and reduces error rates. This approach projects normal, benign, and malignant. The model achieves sensitivity, accuracy, specificity, F1 score, and recall by contrasting RBF with cuckoo search.","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2023.133840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

A major aspect influencing human health is breast cancer. Mammography, fine needle aspiration, and surgical biopsy are some of the evolving diagnosis methods for this problem. Pathology images are used to diagnose breast cancer. Breast tumour surgery allows doctors to microscopically study breast tissue. Traditional methods use a cuckoo-optimised radial basis neural network. Earlier RBN algorithms handled feature extraction and reduction differently. To reduce unneeded complexity, outperform convolutional neural network (CNN) for feature extraction and classification. The Butterfly optimisation technique suggests a CNN. Zernike moments' scale, interpretation, and rotation similarity lets us bypass numerous pre-processing steps. The picture dataset was created from tumour treatment archives. The Butterfly optimisation method feeds the DCNN training data. DCNN removes, reduces, and classifies features. By determining the number of historical periods and training images for Deep CNN, optimisation improves efficiency and reduces error rates. This approach projects normal, benign, and malignant. The model achieves sensitivity, accuracy, specificity, F1 score, and recall by contrasting RBF with cuckoo search.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蝴蝶优化算法的先进DEEPCNN乳腺癌乳房x光图像检测与分类
影响人类健康的一个主要方面是乳腺癌。乳房x线摄影,细针穿刺和手术活检是一些不断发展的诊断方法,为这个问题。病理图像用于诊断乳腺癌。乳房肿瘤手术允许医生在显微镜下研究乳房组织。传统方法使用布谷鸟优化的径向基神经网络。早期的RBN算法处理特征提取和约简的方式不同。为了减少不必要的复杂性,在特征提取和分类方面优于卷积神经网络(CNN)。Butterfly优化技术建议使用CNN。泽尼克矩的尺度、解释和旋转相似性让我们绕过了许多预处理步骤。图片数据集是从肿瘤治疗档案中创建的。Butterfly优化方法为DCNN提供训练数据。DCNN对特征进行删除、简化和分类。通过确定深度CNN的历史周期和训练图像的数量,优化提高了效率并降低了错误率。这种方法显示正常、良性和恶性。通过对比RBF和布谷鸟搜索,该模型获得了灵敏度、准确性、特异性、F1评分和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1