Large deviations for the greedy exploration process on configuration models

Pub Date : 2023-01-01 DOI:10.1214/23-ecp541
Bermolen Paola, Goicoechea Valeria, Jonckheere Matthieu
{"title":"Large deviations for the greedy exploration process on configuration models","authors":"Bermolen Paola, Goicoechea Valeria, Jonckheere Matthieu","doi":"10.1214/23-ecp541","DOIUrl":null,"url":null,"abstract":"We prove a large deviation principle for the greedy exploration of configuration models, building on a time-discretized version of the method proposed by [2] and [4] for jointly constructing a random graph from a given degree sequence and its exploration. The proof of this result follows the general strategy to study large deviations of processes proposed by [9], based on the convergence of non-linear semigroups. We provide an intuitive interpretation of the LD cost function using Crámer’s theorem for the average of random variables with appropriate distribution, depending on the degree distribution of explored nodes. The rate function can be expressed in a closed-form formula, and the large deviations trajectories can be obtained through explicit associated optimization problems. We then deduce large deviations results for the size of the independent set constructed by the algorithm. As a particular case, we analyze these results for d-regular graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ecp541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a large deviation principle for the greedy exploration of configuration models, building on a time-discretized version of the method proposed by [2] and [4] for jointly constructing a random graph from a given degree sequence and its exploration. The proof of this result follows the general strategy to study large deviations of processes proposed by [9], based on the convergence of non-linear semigroups. We provide an intuitive interpretation of the LD cost function using Crámer’s theorem for the average of random variables with appropriate distribution, depending on the degree distribution of explored nodes. The rate function can be expressed in a closed-form formula, and the large deviations trajectories can be obtained through explicit associated optimization problems. We then deduce large deviations results for the size of the independent set constructed by the algorithm. As a particular case, we analyze these results for d-regular graphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
贪心勘探过程在组态模型上的大偏差
我们在[2]和[4]提出的方法的时间离散版本的基础上,证明了组态模型贪婪探索的大偏差原理,该方法用于从给定的度序列及其探索联合构造随机图。该结果的证明遵循了[9]基于非线性半群的收敛性提出的研究过程大偏差的一般策略。我们提供了一个直观的解释的LD成本函数使用Crámer的平均定理随机变量的适当分布,根据探索节点的程度分布。速率函数可以用封闭公式表示,大偏差轨迹可以通过显式关联优化问题得到。然后,我们推导出由算法构建的独立集的大小的大偏差结果。作为一个特例,我们分析了d正则图的这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1