Recent Progress in Melt Pyrolysis: Fabrication and Applications of High‐Value Carbon Materials from Abundant Sources

IF 18.7 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY SusMat Pub Date : 2023-10-01 DOI:10.1002/sus2.165
Kuikui Zhang, Zeai Huang, Mingkai Yang, Mengying Liu, Yunxiao Zhou, Junjie Zhan, Ying Zhou
{"title":"Recent Progress in Melt Pyrolysis: Fabrication and Applications of High‐Value Carbon Materials from Abundant Sources","authors":"Kuikui Zhang, Zeai Huang, Mingkai Yang, Mengying Liu, Yunxiao Zhou, Junjie Zhan, Ying Zhou","doi":"10.1002/sus2.165","DOIUrl":null,"url":null,"abstract":"Abundant carbon sources, such as CH4, CO2, biomass, and plastics, the process of pyrolysis in its molten state facilitates the generation of high-value carbon materials. These materials, encompassing but not confined to carbon black, carbon nanotubes, and graphene, exhibit profound potential for exploitation across a broad spectrum of applications, most notably in the arenas of supercapacitors and flexible materials.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"205 1","pages":"0"},"PeriodicalIF":18.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.165","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abundant carbon sources, such as CH4, CO2, biomass, and plastics, the process of pyrolysis in its molten state facilitates the generation of high-value carbon materials. These materials, encompassing but not confined to carbon black, carbon nanotubes, and graphene, exhibit profound potential for exploitation across a broad spectrum of applications, most notably in the arenas of supercapacitors and flexible materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔融热解的最新进展:高价值碳材料的制备与应用
丰富的碳源,如CH4、CO2、生物质、塑料等,熔融状态下的热解过程有利于生成高价值的碳材料。这些材料,包括但不限于炭黑、碳纳米管和石墨烯,在广泛的应用领域显示出巨大的开发潜力,尤其是在超级电容器和柔性材料领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
4.20%
发文量
0
期刊介绍: SusMat aims to publish interdisciplinary and balanced research on sustainable development in various areas including materials science, engineering, chemistry, physics, and ecology. The journal focuses on sustainable materials and their impact on energy and the environment. The topics covered include environment-friendly materials, green catalysis, clean energy, and waste treatment and management. The readership includes materials scientists, engineers, chemists, physicists, energy and environment researchers, and policy makers. The journal is indexed in CAS, Current Contents, DOAJ, Science Citation Index Expanded, and Web of Science. The journal highly values innovative multidisciplinary research with wide impact.
期刊最新文献
Low dielectric constant and highly intrinsic thermal conductivity fluorine‐containing epoxy resins with ordered liquid crystal structures The design and synthesis of Prussian blue analogs as a sustainable cathode for sodium‐ion batteries Modulating CsPbl3 crystallization by using diammonium agent for efficient solar cells Toward effective electrocatalytic C–N coupling for the synthesis of organic nitrogenous compounds using CO2 and biomass as carbon sources Dimensional engineering of covalent organic frameworks derived carbons for electrocatalytic carbon dioxide reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1