Understanding turbo codes: A signal processing study

Xiang-Gen Xia
{"title":"Understanding turbo codes: A signal processing study","authors":"Xiang-Gen Xia","doi":"10.1016/j.jiixd.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study turbo codes from the digital signal processing point of view by defining turbo codes over the complex field. It is known that iterative decoding and interleaving between concatenated parallel codes are two key elements that make turbo codes perform significantly better than the conventional error control codes. This is analytically illustrated in this paper. We show that the decoded noise mean power in the iterative decoding decreases when the number of iterations increases, as long as the interleaving decorrelates the noise after each iterative decoding step. An analytic decreasing rate and the limit of the decoded noise mean power are given. The limit of the decoded noise mean power of the iterative decoding of a turbo code with two parallel codes with their rates less than 1/2 is one third of the noise power before the decoding, which can not be achieved by any non-turbo codes with the same rate. From this study, the role of designing a good interleaver can also be clearly seen.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"2 1","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949715923000616/pdfft?md5=f118ebffb9d9e7932e08138648929b52&pid=1-s2.0-S2949715923000616-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715923000616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study turbo codes from the digital signal processing point of view by defining turbo codes over the complex field. It is known that iterative decoding and interleaving between concatenated parallel codes are two key elements that make turbo codes perform significantly better than the conventional error control codes. This is analytically illustrated in this paper. We show that the decoded noise mean power in the iterative decoding decreases when the number of iterations increases, as long as the interleaving decorrelates the noise after each iterative decoding step. An analytic decreasing rate and the limit of the decoded noise mean power are given. The limit of the decoded noise mean power of the iterative decoding of a turbo code with two parallel codes with their rates less than 1/2 is one third of the noise power before the decoding, which can not be achieved by any non-turbo codes with the same rate. From this study, the role of designing a good interleaver can also be clearly seen.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解涡轮编码:信号处理研究
本文从数字信号处理的角度出发,通过定义复数域上的涡轮编码来研究涡轮编码。众所周知,迭代解码和并行编码之间的交错是使涡轮编码的性能明显优于传统误差控制编码的两个关键因素。本文通过分析说明了这一点。我们证明,只要交织在每个迭代解码步骤后对噪声进行去相关处理,迭代解码中的解码噪声平均功率就会随着迭代次数的增加而减小。给出了解析递减率和解码噪声平均功率的极限。用两个速率小于 1/2 的并行编码对一个涡轮编码进行迭代解码的解码噪声平均功率的极限是解码前噪声功率的三分之一,这是任何具有相同速率的非涡轮编码都无法达到的。从这项研究中,我们也可以清楚地看到设计一个好的交织器的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Editorial Board Secure performance comparison for NOMA: Reconfigurable intelligent surface or amplify-and-forward relay? Editorial Board Structural knowledge-driven meta-learning for task offloading in vehicular networks with integrated communications, sensing and computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1