Frontiers of collaborative intelligence systems

Maoguo Gong , Yajing He , Hao Li , Yue Wu , Mingyang Zhang , Shanfeng Wang , Tianshi Luo
{"title":"Frontiers of collaborative intelligence systems","authors":"Maoguo Gong ,&nbsp;Yajing He ,&nbsp;Hao Li ,&nbsp;Yue Wu ,&nbsp;Mingyang Zhang ,&nbsp;Shanfeng Wang ,&nbsp;Tianshi Luo","doi":"10.1016/j.jiixd.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>The development of information technology has propelled technological reform in artificial intelligence (AI). To address the needs of diversified and complex applications, AI has been increasingly trending towards intelligent, collaborative, and systematized development across different levels and tasks. Research on intelligent, collaborative and systematized AI can be divided into three levels: micro, meso, and macro. Firstly, the micro-level collaboration is illustrated through the introduction of swarm intelligence collaborative methods related to individuals collaboration and decision variables collaboration. Secondly, the meso-level collaboration is discussed in terms of multi-task collaboration and multi-party collaboration. Thirdly, the macro-level collaboration is primarily in the context of intelligent collaborative systems, such as terrestrial-satellite collaboration, space-air-ground collaboration, space-air-ground-air collaboration, vehicle-road-cloud collaboration and end-edge-cloud collaboration. Finally, this paper provides prospects on the future development of relevant fields from the perspectives of the micro, meso, and macro levels.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"2 1","pages":"Pages 14-27"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294971592300063X/pdfft?md5=666b324f5aba714a9622c1ecb7cabb7c&pid=1-s2.0-S294971592300063X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294971592300063X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of information technology has propelled technological reform in artificial intelligence (AI). To address the needs of diversified and complex applications, AI has been increasingly trending towards intelligent, collaborative, and systematized development across different levels and tasks. Research on intelligent, collaborative and systematized AI can be divided into three levels: micro, meso, and macro. Firstly, the micro-level collaboration is illustrated through the introduction of swarm intelligence collaborative methods related to individuals collaboration and decision variables collaboration. Secondly, the meso-level collaboration is discussed in terms of multi-task collaboration and multi-party collaboration. Thirdly, the macro-level collaboration is primarily in the context of intelligent collaborative systems, such as terrestrial-satellite collaboration, space-air-ground collaboration, space-air-ground-air collaboration, vehicle-road-cloud collaboration and end-edge-cloud collaboration. Finally, this paper provides prospects on the future development of relevant fields from the perspectives of the micro, meso, and macro levels.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协作智能系统的前沿
信息技术的发展推动了人工智能(AI)的技术改革。为满足多样化、复杂化的应用需求,人工智能越来越趋向于智能化、协同化、系统化的发展,跨越不同的层次和任务。关于人工智能智能化、协同化和系统化的研究可分为微观、中观和宏观三个层面。首先,微观层面的协作通过引入与个体协作和决策变量协作相关的蜂群智能协作方法来说明。其次,从多任务协作和多方协作两个方面探讨中观层面的协作。第三,宏观层面的协同主要结合智能协同系统,如地-卫星协同、空-空-地协同、空-空-地-空协同、车-路-云协同、端-边-云协同等。最后,本文从微观、中观和宏观三个层面对相关领域的未来发展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Editorial Board Secure performance comparison for NOMA: Reconfigurable intelligent surface or amplify-and-forward relay? Editorial Board Structural knowledge-driven meta-learning for task offloading in vehicular networks with integrated communications, sensing and computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1