Leveraging immunoliposomes as nanocarriers against SARS-CoV-2 and its emerging variants

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY Asian Journal of Pharmaceutical Sciences Pub Date : 2023-11-01 DOI:10.1016/j.ajps.2023.100855
Nur Dini Fatini Mohammad Faizal , Nurul Afina Ramli , Nur Najihah Izzati Mat Rani , Nur Adania Shaibie , Aarti , Pattaporn Poonsawas , Sunil K. Sharma , Mohd Cairul Iqbal Mohd Amin
{"title":"Leveraging immunoliposomes as nanocarriers against SARS-CoV-2 and its emerging variants","authors":"Nur Dini Fatini Mohammad Faizal ,&nbsp;Nurul Afina Ramli ,&nbsp;Nur Najihah Izzati Mat Rani ,&nbsp;Nur Adania Shaibie ,&nbsp;Aarti ,&nbsp;Pattaporn Poonsawas ,&nbsp;Sunil K. Sharma ,&nbsp;Mohd Cairul Iqbal Mohd Amin","doi":"10.1016/j.ajps.2023.100855","DOIUrl":null,"url":null,"abstract":"<div><p>The global COVID-19 pandemic arising from SARS-CoV-2 has impacted many lives, gaining interest worldwide ever since it was first identified in December 2019. Till 2023, 752 million cumulative cases and 6.8 million deaths were documented globally. COVID-19 has been rapidly evolving, affecting virus transmissibility and properties and contributing to increased disease severity. The Omicron is the most circulating variant of concern. Although success in its treatment has indicated progress in tackling the virus, limitations in delivering the current antiviral agents in battling emerging variants remain remarkable. With the latest advancements in nanotechnology for controlling infectious diseases, liposomes have the potential to counteract SARS-CoV-2 because of their ability to employ different targeting strategies, incorporating monoclonal antibodies for the active and passive targeting of infected patients. This review will present a concise summary of the possible strategies for utilizing immunoliposomes to improve current treatment against the occurrence of SARS-CoV-2 and its variants.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S181808762300082X/pdfft?md5=e8406d12085f6381f6578dc836e21539&pid=1-s2.0-S181808762300082X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S181808762300082X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The global COVID-19 pandemic arising from SARS-CoV-2 has impacted many lives, gaining interest worldwide ever since it was first identified in December 2019. Till 2023, 752 million cumulative cases and 6.8 million deaths were documented globally. COVID-19 has been rapidly evolving, affecting virus transmissibility and properties and contributing to increased disease severity. The Omicron is the most circulating variant of concern. Although success in its treatment has indicated progress in tackling the virus, limitations in delivering the current antiviral agents in battling emerging variants remain remarkable. With the latest advancements in nanotechnology for controlling infectious diseases, liposomes have the potential to counteract SARS-CoV-2 because of their ability to employ different targeting strategies, incorporating monoclonal antibodies for the active and passive targeting of infected patients. This review will present a concise summary of the possible strategies for utilizing immunoliposomes to improve current treatment against the occurrence of SARS-CoV-2 and its variants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用免疫脂质体作为纳米载体对抗SARS-CoV-2及其新变体
由SARS-CoV-2引起的全球COVID-19大流行影响了许多人的生活,自2019年12月首次发现以来,它引起了全世界的关注。到2023年,全球累计记录了7.52亿例病例和680万例死亡。COVID-19迅速演变,影响了病毒的传播性和性质,并导致疾病严重程度增加。欧米克隆是最流行的担忧变体。尽管这种治疗方法的成功表明,在对付这种病毒方面取得了进展,但目前的抗病毒药物在对抗新出现的变种方面仍然存在显著的局限性。随着纳米技术在控制传染病方面的最新进展,脂质体具有对抗SARS-CoV-2的潜力,因为它们能够采用不同的靶向策略,将单克隆抗体纳入主动和被动靶向感染患者。本综述将简要总结利用免疫脂质体改善当前治疗SARS-CoV-2及其变体的可能策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
期刊最新文献
Extracellular vesicle-functionalized bioactive scaffolds for bone regeneration Recent advances in spatio-temporally controllable systems for management of glioma Deep near infrared light-excited stable synergistic photodynamic and photothermal therapies based on P-IR890 nano-photosensitizer constructed via a non-cyanine dye Electrostatic spraying for fine-tuning particle dimensions to enhance oral bioavailability of poorly water-soluble drugs Metal-organic frameworks in oral drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1