Carrier-Mediated Delivery of Low-Molecular-Weight N-Containing Drugs across the Blood–Brain Barrier or the Blood–Retinal Barrier Using the Proton-Coupled Organic Cation Antiporter

Toshihiko Tashima
{"title":"Carrier-Mediated Delivery of Low-Molecular-Weight N-Containing Drugs across the Blood–Brain Barrier or the Blood–Retinal Barrier Using the Proton-Coupled Organic Cation Antiporter","authors":"Toshihiko Tashima","doi":"10.3390/futurepharmacol3040046","DOIUrl":null,"url":null,"abstract":"While it is true that pharmacotherapy has achieved desired health outcomes, significant unmet medical needs persist in the field of central nervous system (CNS) drugs, particularly for neurodegenerative diseases such as Alzheimer’s disease, as well as ocular diseases such as diabetic retinopathy and age-related macular degeneration. Drugs cannot enter the brain from the bloodstream due to the presence of the blood–brain barrier (BBB). Similarly, they cannot enter the eyes from the bloodstream due to the blood–retina barrier (BRB), which is composed of the endothelium or the epithelium. Thus, innovative drug delivery systems that can overcome these barriers based on efflux transporters, hydrophobic lipid bilayer membranes, and tight junctions should be developed using patient-friendly techniques distinct from craniotomy procedures or intravitreal injections. Brain-penetrating CNS drugs and antihistamine drugs commonly share N-containing groups. These findings suggest that certain types of cation transporters are involved in their transportation across the cell membrane. Indeed, the proton-coupled organic cation (H+/OC) antiporter, whose specific characteristics remain unidentified, is responsible for transporting compounds with N-containing groups, such as clonidine and pyrilamine, at the BBB, and likely at the BRB as well. Therefore, well-designed low-molecular-weight drugs containing N-containing groups as transporter recognition units can enter the brain or the eyes through carrier-mediated transport. In this perspective review, I introduce the implementation and potential of H+/OC antiporter-mediated transport across the endothelium at the BBB or the BRB using drugs consciously designed with N-containing groups as their substrates.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/futurepharmacol3040046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While it is true that pharmacotherapy has achieved desired health outcomes, significant unmet medical needs persist in the field of central nervous system (CNS) drugs, particularly for neurodegenerative diseases such as Alzheimer’s disease, as well as ocular diseases such as diabetic retinopathy and age-related macular degeneration. Drugs cannot enter the brain from the bloodstream due to the presence of the blood–brain barrier (BBB). Similarly, they cannot enter the eyes from the bloodstream due to the blood–retina barrier (BRB), which is composed of the endothelium or the epithelium. Thus, innovative drug delivery systems that can overcome these barriers based on efflux transporters, hydrophobic lipid bilayer membranes, and tight junctions should be developed using patient-friendly techniques distinct from craniotomy procedures or intravitreal injections. Brain-penetrating CNS drugs and antihistamine drugs commonly share N-containing groups. These findings suggest that certain types of cation transporters are involved in their transportation across the cell membrane. Indeed, the proton-coupled organic cation (H+/OC) antiporter, whose specific characteristics remain unidentified, is responsible for transporting compounds with N-containing groups, such as clonidine and pyrilamine, at the BBB, and likely at the BRB as well. Therefore, well-designed low-molecular-weight drugs containing N-containing groups as transporter recognition units can enter the brain or the eyes through carrier-mediated transport. In this perspective review, I introduce the implementation and potential of H+/OC antiporter-mediated transport across the endothelium at the BBB or the BRB using drugs consciously designed with N-containing groups as their substrates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用质子偶联有机阳离子反转运蛋白,载体介导低分子量含n药物通过血脑屏障或血视网膜屏障的递送
虽然药物治疗确实取得了理想的健康结果,但在中枢神经系统(CNS)药物领域,特别是阿尔茨海默病等神经退行性疾病,以及糖尿病视网膜病变和年龄相关性黄斑变性等眼部疾病,仍存在大量未满足的医疗需求。由于血脑屏障(BBB)的存在,药物不能从血液进入大脑。同样,由于血视网膜屏障(BRB),它们不能从血液中进入眼睛,血视网膜屏障由内皮细胞或上皮细胞组成。因此,创新的药物输送系统可以克服这些障碍,这些障碍是基于外排转运体、疏水性脂质双层膜和紧密连接,应该使用不同于开颅手术或玻璃体内注射的患者友好技术来开发的。穿透大脑的中枢神经系统药物和抗组胺药物通常共用含n基团。这些发现表明,某些类型的阳离子转运体参与了它们在细胞膜上的运输。事实上,质子偶联有机阳离子(H+/OC)反转运体,其具体特征仍未确定,负责在BBB,也可能在BRB运输含n基团的化合物,如可乐定和吡啶胺。因此,设计良好的含有含n基团作为转运体识别单位的低分子药物可以通过载体介导的转运进入大脑或眼睛。在这篇前瞻性综述中,我介绍了H+/OC反转运蛋白介导的转运在血脑屏障或血脑屏障上的实现和潜力,使用有意识地以含n基团为底物设计的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents Biologics, Small Molecules and More in Inflammatory Bowel Disease: The Present and the Future Comparative Study of the Effects of Curcuminoids and Tetrahydrocurcuminoids on Melanogenesis: Role of the Methoxy Groups Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review Target-Based 6-5 Fused Ring Heterocyclic Scaffolds Display Broad Antiparasitic Potency In Vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1