{"title":"Refined Decay Estimate and Analyticity of Solutions to the Linear Heat Equation in Homogeneous Besov Spaces","authors":"Tohru Ozawa, Taiki Takeuchi","doi":"10.1007/s00041-023-10042-2","DOIUrl":null,"url":null,"abstract":"Abstract The heat semigroup $$\\{T(t)\\}_{t \\ge 0}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>T</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:math> defined on homogeneous Besov spaces $$\\dot{B}_{p,q}^s(\\mathbb {R}^n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is considered. We show the decay estimate of $$T(t)f \\in \\dot{B}_{p,1}^{s+\\sigma }(\\mathbb {R}^n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>T</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>+</mml:mo> <mml:mi>σ</mml:mi> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> for $$f \\in \\dot{B}_{p,\\infty }^s(\\mathbb {R}^n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> with an explicit bound depending only on the regularity index $$\\sigma >0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> and space dimension n . It may be regarded as a refined result compared with that of the second author (Takeuchi in Partial Differ Equ Appl Math 4 :100174, 2021). As a result of the refined decay estimate, we also improve a lower bound estimate of the radius of convergence of the Taylor expansion of $$T(\\cdot )f$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>(</mml:mo> <mml:mo>·</mml:mo> <mml:mo>)</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:math> in space and time. To refine the previous results, we show explicit pointwise estimates of higher order derivatives of the power function $$|\\xi |^{\\sigma }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>ξ</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>σ</mml:mi> </mml:msup> </mml:math> for $$\\sigma \\in \\mathbb {R}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> . In addition, we also refine the $$L^1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> -estimate of the derivatives of the heat kernel.","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00041-023-10042-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The heat semigroup $$\{T(t)\}_{t \ge 0}$$ {T(t)}t≥0 defined on homogeneous Besov spaces $$\dot{B}_{p,q}^s(\mathbb {R}^n)$$ B˙p,qs(Rn) is considered. We show the decay estimate of $$T(t)f \in \dot{B}_{p,1}^{s+\sigma }(\mathbb {R}^n)$$ T(t)f∈B˙p,1s+σ(Rn) for $$f \in \dot{B}_{p,\infty }^s(\mathbb {R}^n)$$ f∈B˙p,∞s(Rn) with an explicit bound depending only on the regularity index $$\sigma >0$$ σ>0 and space dimension n . It may be regarded as a refined result compared with that of the second author (Takeuchi in Partial Differ Equ Appl Math 4 :100174, 2021). As a result of the refined decay estimate, we also improve a lower bound estimate of the radius of convergence of the Taylor expansion of $$T(\cdot )f$$ T(·)f in space and time. To refine the previous results, we show explicit pointwise estimates of higher order derivatives of the power function $$|\xi |^{\sigma }$$ |ξ|σ for $$\sigma \in \mathbb {R}$$ σ∈R . In addition, we also refine the $$L^1$$ L1 -estimate of the derivatives of the heat kernel.
期刊介绍:
The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics.
TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers.
Areas of applications include the following:
antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications