{"title":"How does your viewing perspective matter for decision-making with flood risk maps?*","authors":"Fabian Kuster, Ian T. Ruginski, S.I. Fabrikant","doi":"10.1080/15230406.2023.2268502","DOIUrl":null,"url":null,"abstract":"The globally increasing frequency of flood events highlights the importance of effective flood risk communication. The influence of the viewing perspective of mapped flood events on human risk perception has not yet been a research focus of the geovisualization community. This empirical study aims to fill this gap by investigating how the viewing perspective of flood risk maps, that is, 2D orthographic vs. 2.5D oblique views, influence human flood risk perception and decision-making. Results on how viewing perspective might influence measured risk perception are in line with prior inconclusive research on the utility and usability of adding a third viewing dimension on static maps. Unlike prior research would have suggested, we find that the individual risk attitude of our participants had no direct influence on their risk ratings in the context of this study. With additional empirical evidence on how static 2D and oblique 2.5D hazard maps might influence the public’s risk perception and decision-making, we hope to further inform policy and decision makers on the critical importance of well-designed cartographic displays for effective and efficient hazard and risk communication. We also provide an open-source code repository for making reproducible experiments with our static maps.","PeriodicalId":47562,"journal":{"name":"Cartography and Geographic Information Science","volume":"102 ","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cartography and Geographic Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15230406.2023.2268502","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The globally increasing frequency of flood events highlights the importance of effective flood risk communication. The influence of the viewing perspective of mapped flood events on human risk perception has not yet been a research focus of the geovisualization community. This empirical study aims to fill this gap by investigating how the viewing perspective of flood risk maps, that is, 2D orthographic vs. 2.5D oblique views, influence human flood risk perception and decision-making. Results on how viewing perspective might influence measured risk perception are in line with prior inconclusive research on the utility and usability of adding a third viewing dimension on static maps. Unlike prior research would have suggested, we find that the individual risk attitude of our participants had no direct influence on their risk ratings in the context of this study. With additional empirical evidence on how static 2D and oblique 2.5D hazard maps might influence the public’s risk perception and decision-making, we hope to further inform policy and decision makers on the critical importance of well-designed cartographic displays for effective and efficient hazard and risk communication. We also provide an open-source code repository for making reproducible experiments with our static maps.
期刊介绍:
Cartography and Geographic Information Science (CaGIS) is the official publication of the Cartography and Geographic Information Society (CaGIS), a member organization of the American Congress on Surveying and Mapping (ACSM). The Cartography and Geographic Information Society supports research, education, and practices that improve the understanding, creation, analysis, and use of maps and geographic information. The society serves as a forum for the exchange of original concepts, techniques, approaches, and experiences by those who design, implement, and use geospatial technologies through the publication of authoritative articles and international papers.