Estimation of Fagus orientalis Lipsky height using nonlinear models in Hyrcanian forests, Iran

IF 1.1 Q3 FORESTRY Journal of forest science Pub Date : 2023-10-30 DOI:10.17221/93/2022-jfs
Mohammad Rasoul Nazari Sendi, Iraj Hassanzad Navroodi, Aman Mohammad Kalteh
{"title":"Estimation of Fagus orientalis Lipsky height using nonlinear models in Hyrcanian forests, Iran","authors":"Mohammad Rasoul Nazari Sendi, Iraj Hassanzad Navroodi, Aman Mohammad Kalteh","doi":"10.17221/93/2022-jfs","DOIUrl":null,"url":null,"abstract":"Tree height is one of the most important variables in describing forest stand structure. However, due to difficulty in height measurement, especially in dense and mountainous forests, the common approach is to invoke the height-diameter (H-D) models. The oriental beech (<i>Fagus orientalis</i> Lipsky) is one of the most important species of Hyrcanian forests, over the mid to high-altitudes (400–1 800 m a.s.l.), in northern Iran. In this study, the H-D relationship of beech trees was investigated separately for mid-altitude and high-altitude in Shafaroud forests of Guilan using 14 nonlinear H-D models and an artificial neural network model (ANN). To collect data, a systematic random sampling method within a 100 × 100 m regular randomized grid was applied. In total, 3 243 individual trees in 255 circular plots with 0.1 ha were measured. For comparing the results, performance criteria including root mean square error (<i>RMSE</i>), <i>R</i><sup>2</sup><i><sub>adj</sub></i>, Akaike's information criterion (<i>AIC</i>)<i>,</i> and mean absolute error (<i>MAE</i>) were used. In high and mid altitudes, Meyer (1940) and Bates and Watts (1980) models had the best performance, while Watts (1983) model and Burkhart-Strub (1974) model had the worst performance in high-altitude and in mid-altitude, respectively. On the other hand, the ANN model had the best accuracy and performance in both sites. Since the performance of the ANN model is superior and consistent compared to the common nonlinear models, here it is preferred for both regions.","PeriodicalId":16011,"journal":{"name":"Journal of forest science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forest science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/93/2022-jfs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Tree height is one of the most important variables in describing forest stand structure. However, due to difficulty in height measurement, especially in dense and mountainous forests, the common approach is to invoke the height-diameter (H-D) models. The oriental beech (Fagus orientalis Lipsky) is one of the most important species of Hyrcanian forests, over the mid to high-altitudes (400–1 800 m a.s.l.), in northern Iran. In this study, the H-D relationship of beech trees was investigated separately for mid-altitude and high-altitude in Shafaroud forests of Guilan using 14 nonlinear H-D models and an artificial neural network model (ANN). To collect data, a systematic random sampling method within a 100 × 100 m regular randomized grid was applied. In total, 3 243 individual trees in 255 circular plots with 0.1 ha were measured. For comparing the results, performance criteria including root mean square error (RMSE), R2adj, Akaike's information criterion (AIC), and mean absolute error (MAE) were used. In high and mid altitudes, Meyer (1940) and Bates and Watts (1980) models had the best performance, while Watts (1983) model and Burkhart-Strub (1974) model had the worst performance in high-altitude and in mid-altitude, respectively. On the other hand, the ANN model had the best accuracy and performance in both sites. Since the performance of the ANN model is superior and consistent compared to the common nonlinear models, here it is preferred for both regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非线性模型估算伊朗海卡尼亚森林中毛茛的高度
树高isÂ一ofÂ最重要的变量inÂ描述森林林分结构。然而,由于toÂ高度测量困难inÂ,特别是inÂ茂密的山地森林,常用的方法is toÂ调用高径(H-D)模型。东方山毛榉(Fagus orientalis Lipsky) isÂ是ofÂ海卡尼亚森林中最重要的一种ofÂ,位于toÂ高海拔地区中部(400-1 800 m a.s.l.), inÂ伊朗北部。InÂ本研究分别利用14Â非线性H-DÂ模型和anÂ人工神经网络模型(ANN)研究了中海拔和高海拔inÂ桂兰沙木林的H-DÂ关系ofÂ。ToÂ采集数据,aÂ系统随机抽样方法在a 100 Ă—100 m范围内采用规则随机网格。InÂ共测量了3 243棵树in 255个0.1 ha的圆形样地。采用均方根误差(RMSE)、R2adj、赤池信息准则(AIC)和平均绝对误差(MAE)等性能标准对结果进行比较。InÂ高、中海拔,Meyer(1940)和Bates and Watts(1980)模型表现最好,Watts(1983)模型和Burkhart-Strub(1974)模型表现最差inÂ高海拔和inÂ中海拔。OnÂ另一方面,人工神经网络模型具有最好的精度和性能inÂ两个站点。由于性能ofÂ人工神经网络模型isÂ优于和一致toÂ与常见的非线性模型相比,这里it isÂ优先用于两个区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
9.10%
发文量
48
审稿时长
6 weeks
期刊介绍: Original results of basic and applied research from all fields of forestry related to European forest ecosystems and their functions including those in the landscape and wood production chain are published in original scientific papers, short communications and review articles. Papers are published in English
期刊最新文献
Change in forest species composition and its projections into the economy of forest owners Over- and under-bark volume estimation of European larch timber produced by mechanised harvesting in Czechia Overgrazing strongly impedes the natural regeneration of the endemic Boswellia species on Socotra Island Innovations in the methodological approach to quantifying and evaluating the supported effects of forests for recreational and educational ecosystem services Calculation and operational assessment of tyre contact areas in the tractor-and-trailer unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1