A Survey on Various Approaches for Support Vector Machine Based Engineering Applications

Khushboo Nagar, M.P.S. Chawla
{"title":"A Survey on Various Approaches for Support Vector Machine Based Engineering Applications","authors":"Khushboo Nagar, M.P.S. Chawla","doi":"10.35940/ijese.k2555.10111123","DOIUrl":null,"url":null,"abstract":"Support vector machines describe a system that uses a feature space with a hypothesis space of linear functions that is trained using various learning algorithms from optimization theory. This paper presents a brief introduction to SVM, and a survey with different methods applied for obtaining results using classifiers. The aim is to classify and obtain results for different classes of points with different SVM classifiers and to justify the results using various methods like Gaussian Kernel, Custom Kernel, Cross Validate functioning of SVM classifiers through Posterior Probability Regions for SVM classification models with various types of data.","PeriodicalId":492421,"journal":{"name":"International journal of emerging science and engineering","volume":"94 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of emerging science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijese.k2555.10111123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Support vector machines describe a system that uses a feature space with a hypothesis space of linear functions that is trained using various learning algorithms from optimization theory. This paper presents a brief introduction to SVM, and a survey with different methods applied for obtaining results using classifiers. The aim is to classify and obtain results for different classes of points with different SVM classifiers and to justify the results using various methods like Gaussian Kernel, Custom Kernel, Cross Validate functioning of SVM classifiers through Posterior Probability Regions for SVM classification models with various types of data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的各种工程应用方法综述
支持向量机描述了一个系统,该系统使用线性函数的假设空间和特征空间,并使用优化理论中的各种学习算法进行训练。本文简要介绍了支持向量机,并对使用分类器获取结果的不同方法进行了综述。目的是使用不同的SVM分类器对不同类别的点进行分类并获得结果,并对具有不同类型数据的SVM分类模型使用高斯核、自定义核、通过后验概率区域对SVM分类器进行交叉验证等方法对结果进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Consumer Responses to Ready to Wear Dresses with Batik Motifs Improvement of Performance and Efficiency Through the Use of Permanent Magnet Propelling Phenomenon in Traditional Vertical Axis Wind Turbine Systems Evaluating the Role of STEM Education in Empowering Secondary School Students Encrypt Express: Security Enhancement, Maximizing Load Utilization in Cargo Transport through IoT and Algorithmic Solutions Guardian Gear: Advancing Safely with Smart Mining Helmet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1