Xiwei Wu, Jing Zhang, Jianxun Zhang, Rui He, Qimin Liu
{"title":"Low-velocity impact of square conical gradient aluminium foam-filled automobile energy-absorbing boxes","authors":"Xiwei Wu, Jing Zhang, Jianxun Zhang, Rui He, Qimin Liu","doi":"10.1080/13588265.2023.2242647","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, the low-velocity impact and lightweight design of the square conical gradient aluminium foam-filled automobile energy-absorbing boxes (EABes) is numerically studied. Firstly, the validity of the finite element calculation model is verified by comparing with the experimental results. Then, the influences of the conical bottom angle, tube-wall thickness, the number, position, height and depth of induction grooves, and the parameters of gradient foam on the energy absorption properties of the EABes under axial low-velocity impact are studied. After that, the mitigation and energy absorption of square conical gradient aluminium foam-filled automobile EAB are optimised. The results indicate that the aluminium tube-wall thickness has no obvious effect on improving the energy absorption properties of the EAB, and other factors have good effects on improving the energy absorption properties of the EAB. Compared with the constant cross-section EAB before optimisation, the peak impact force (Fmax) of the finally optimised square conical gradient aluminium foam-filled automobile EAB reduces by 22.4%, and the specific energy absorption (SEA) increases by 59.8%. The investigation is helpful for the design of the square conical gradient aluminium foam-filled automobile EAB.Keywords: Conical automobile energy-absorbing boxgradient aluminium foamlow-velocity impactlightweight design Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe authors attest that all data for this study are included in the paper.Additional informationFundingThe authors are grateful for their financial support through NSFC (12272290 and 11872291), Foundation of State Key Laboratory of Automotive Simulation and Control (20210206), the State Key Laboratory of Automotive Safety and Energy under Project No. KFY2202.","PeriodicalId":13784,"journal":{"name":"International Journal of Crashworthiness","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Crashworthiness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13588265.2023.2242647","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractIn this paper, the low-velocity impact and lightweight design of the square conical gradient aluminium foam-filled automobile energy-absorbing boxes (EABes) is numerically studied. Firstly, the validity of the finite element calculation model is verified by comparing with the experimental results. Then, the influences of the conical bottom angle, tube-wall thickness, the number, position, height and depth of induction grooves, and the parameters of gradient foam on the energy absorption properties of the EABes under axial low-velocity impact are studied. After that, the mitigation and energy absorption of square conical gradient aluminium foam-filled automobile EAB are optimised. The results indicate that the aluminium tube-wall thickness has no obvious effect on improving the energy absorption properties of the EAB, and other factors have good effects on improving the energy absorption properties of the EAB. Compared with the constant cross-section EAB before optimisation, the peak impact force (Fmax) of the finally optimised square conical gradient aluminium foam-filled automobile EAB reduces by 22.4%, and the specific energy absorption (SEA) increases by 59.8%. The investigation is helpful for the design of the square conical gradient aluminium foam-filled automobile EAB.Keywords: Conical automobile energy-absorbing boxgradient aluminium foamlow-velocity impactlightweight design Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe authors attest that all data for this study are included in the paper.Additional informationFundingThe authors are grateful for their financial support through NSFC (12272290 and 11872291), Foundation of State Key Laboratory of Automotive Simulation and Control (20210206), the State Key Laboratory of Automotive Safety and Energy under Project No. KFY2202.
期刊介绍:
International Journal of Crashworthiness is the only journal covering all matters relating to the crashworthiness of road vehicles (including cars, trucks, buses and motorcycles), rail vehicles, air and spacecraft, ships and submarines, and on- and off-shore installations.
The Journal provides a unique forum for the publication of original research and applied studies relevant to an audience of academics, designers and practicing engineers. International Journal of Crashworthiness publishes both original research papers (full papers and short communications) and state-of-the-art reviews.
International Journal of Crashworthiness welcomes papers that address the quality of response of materials, body structures and energy-absorbing systems that are subjected to sudden dynamic loading, papers focused on new crashworthy structures, new concepts in restraint systems and realistic accident reconstruction.