Integration of Face and Gait Recognition via Transfer Learning: A Multiscale Biometric Identification Approach

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Traitement Du Signal Pub Date : 2023-10-30 DOI:10.18280/ts.400535
Dindar M. Ahmed, Basil Sh. Mahmood
{"title":"Integration of Face and Gait Recognition via Transfer Learning: A Multiscale Biometric Identification Approach","authors":"Dindar M. Ahmed, Basil Sh. Mahmood","doi":"10.18280/ts.400535","DOIUrl":null,"url":null,"abstract":"The ubiquity of biometric identification systems and their applications is evident in today's world. Among various biometric features, face and gait are readily obtainable and thus hold significant value. Advances in computational vision and deep learning have paved the way for the integration of these biometric features at multiple scales. This study introduces a system for biometric recognition that synergises face and gait recognition through the lens of transfer learning. Feature extraction was accomplished using Inception_v3 and DenseNet201 algorithms, while classification was performed employing machine learning algorithms such as K-Nearest Neighbours (KNN) and Support Vector Classification (SVC). A unique dataset was constructed for this research, consisting of face and gait information extracted from video clips. The findings underscore the efficacy of integrating face and gait recognition, primarily through feature and score fusion, resulting in enhanced recognition accuracy. Specifically, the Inception_v3 algorithm was found to excel in feature extraction, and SVC was superior for classification purposes. The system achieved an accuracy of 98% when feature-level fusion was performed, and 97% accuracy was observed with score fusion using Decision Trees. The results highlight the potential of transfer learning in advancing multiscale biometric recognition systems.","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":"20 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ts.400535","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The ubiquity of biometric identification systems and their applications is evident in today's world. Among various biometric features, face and gait are readily obtainable and thus hold significant value. Advances in computational vision and deep learning have paved the way for the integration of these biometric features at multiple scales. This study introduces a system for biometric recognition that synergises face and gait recognition through the lens of transfer learning. Feature extraction was accomplished using Inception_v3 and DenseNet201 algorithms, while classification was performed employing machine learning algorithms such as K-Nearest Neighbours (KNN) and Support Vector Classification (SVC). A unique dataset was constructed for this research, consisting of face and gait information extracted from video clips. The findings underscore the efficacy of integrating face and gait recognition, primarily through feature and score fusion, resulting in enhanced recognition accuracy. Specifically, the Inception_v3 algorithm was found to excel in feature extraction, and SVC was superior for classification purposes. The system achieved an accuracy of 98% when feature-level fusion was performed, and 97% accuracy was observed with score fusion using Decision Trees. The results highlight the potential of transfer learning in advancing multiscale biometric recognition systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的人脸和步态识别集成:一种多尺度生物特征识别方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Traitement Du Signal
Traitement Du Signal 工程技术-工程:电子与电气
自引率
21.10%
发文量
162
审稿时长
>12 weeks
期刊介绍: The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies. The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to: Signal processing Imaging Visioning Control Filtering Compression Data transmission Noise reduction Deconvolution Prediction Identification Classification.
期刊最新文献
Hierarchical Spatial Feature-CNN Employing Grad-CAM for Enhanced Segmentation and Classification in Alzheimer's and Parkinson's Disease Diagnosis via MRI Massage Acupoint Positioning Method of Human Body Images Based on Transfer Learning Exploring the Application of Deep Learning in Multi-View Image Fusion in Complex Environments A Hybrid Diabetic Retinopathy Neural Network Model for Early Diabetic Retinopathy Detection and Classification of Fundus Images Leveraging Tripartite Tier Convolutional Neural Network for Human Emotion Recognition: A Multimodal Data Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1