Chuang Liu, Jiahong Liu, Xiangyi Ding, Weiwei Shao, Xin Su
{"title":"Analysis of urban water dissipation characteristics considering anthropogenic impacts: a case study in Beijing","authors":"Chuang Liu, Jiahong Liu, Xiangyi Ding, Weiwei Shao, Xin Su","doi":"10.2166/wcc.2023.195","DOIUrl":null,"url":null,"abstract":"Abstract Urban water dissipation is a significant part of the urban hydrologic cycle and has a typical natural–social dualistic attribute. Besides natural evaporation, the water dissipation in people's daily life and production process cannot be ignored. This study developed an urban water dissipation model based on different land uses and applied it in urban-built areas in Beijing. The results showed that the water dissipation of buildings and green spaces occupied the dominant position, and the water dissipation intensity of each district exceeded 500 mm, among which the six core districts were 700–1,100 mm. Comparing the water dissipation contribution rate and area rate of each underlying surface, it showed that the water dissipation intensity from strong to weak was building, water surface, green spaces, and hardened ground. According to the dualistic analysis of urban water dissipation, the contribution rates of social water dissipation in the six core districts were 45.3–69.1%, which was higher than the 17.8–36.1% of other suburbs obviously. This study reflected that the higher the degree of regional urbanization, the greater the water dissipation intensity, and artificial water dissipation was the main influencing factor.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":"16 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.195","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Urban water dissipation is a significant part of the urban hydrologic cycle and has a typical natural–social dualistic attribute. Besides natural evaporation, the water dissipation in people's daily life and production process cannot be ignored. This study developed an urban water dissipation model based on different land uses and applied it in urban-built areas in Beijing. The results showed that the water dissipation of buildings and green spaces occupied the dominant position, and the water dissipation intensity of each district exceeded 500 mm, among which the six core districts were 700–1,100 mm. Comparing the water dissipation contribution rate and area rate of each underlying surface, it showed that the water dissipation intensity from strong to weak was building, water surface, green spaces, and hardened ground. According to the dualistic analysis of urban water dissipation, the contribution rates of social water dissipation in the six core districts were 45.3–69.1%, which was higher than the 17.8–36.1% of other suburbs obviously. This study reflected that the higher the degree of regional urbanization, the greater the water dissipation intensity, and artificial water dissipation was the main influencing factor.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.