Liu Yang, Chunhui Li, Qingtao Wang, Shuxian Shi, Mengru Yang
{"title":"Adaptive dynamic windowing approach based on risk degree function","authors":"Liu Yang, Chunhui Li, Qingtao Wang, Shuxian Shi, Mengru Yang","doi":"10.1177/01423312231199807","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that the dynamic window approach (DWA) has low planning efficiency and it is difficult to avoid fast-moving obstacles, an improved adaptive DWA based on risk degree function is proposed in this paper. The risk function is designed and introduced into the evaluation function of the traditional DWA to evaluate the risk of collision between dynamic obstacles and the robot, so that the robot can effectively avoid faster obstacles. Then, according to the fuzzy control principle, the adaptive weight coefficient is designed to improve the evaluation function, so that the mobile robot can move to the target point more efficiently. The simulation results show that compared with the traditional DWA, the adaptive DWA based on risk degree function reduces the time of completing the planning task by about 8%, and the path length after the completion of the planning by about 8%, it indicates that the improved algorithm has higher efficiency. After 50 repeated experiments, using the adaptive DWA based on risk degree function successfully avoids all obstacles to complete the planning task, which shows that this algorithm has higher security.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"26 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312231199807","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the problem that the dynamic window approach (DWA) has low planning efficiency and it is difficult to avoid fast-moving obstacles, an improved adaptive DWA based on risk degree function is proposed in this paper. The risk function is designed and introduced into the evaluation function of the traditional DWA to evaluate the risk of collision between dynamic obstacles and the robot, so that the robot can effectively avoid faster obstacles. Then, according to the fuzzy control principle, the adaptive weight coefficient is designed to improve the evaluation function, so that the mobile robot can move to the target point more efficiently. The simulation results show that compared with the traditional DWA, the adaptive DWA based on risk degree function reduces the time of completing the planning task by about 8%, and the path length after the completion of the planning by about 8%, it indicates that the improved algorithm has higher efficiency. After 50 repeated experiments, using the adaptive DWA based on risk degree function successfully avoids all obstacles to complete the planning task, which shows that this algorithm has higher security.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.