{"title":"Sand Cat Arithmetic Optimization Algorithm for Global Optimization Engineering Design Problems","authors":"Shuilin Chen, Jianguo Zheng","doi":"10.1093/jcde/qwad094","DOIUrl":null,"url":null,"abstract":"Abstract Sand cat swarm optimization (SCSO) is a recently introduced popular swarm intelligence metaheuristic algorithm, which has two significant limitations – low convergence accuracy and the tendency to get stuck in local optima. To alleviate these issues, this paper proposes an improved SCSO based on the arithmetic optimization algorithm (AOA), the refracted opposition-based learning and crisscross strategy, called the sand cat arithmetic optimization algorithm (SC-AOA), which introduced AOA to balance the exploration and exploitation and reduce the possibility of falling into the local optimum, used crisscross strategy to enhance convergence accuracy. The effectiveness of SC-AOA is benchmarked on 10 benchmark functions, CEC 2014, CEC 2017, CEC 2022, and eight engineering problems. The results show that the SC-AOA has a competitive performance.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":"74 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jcde/qwad094","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Sand cat swarm optimization (SCSO) is a recently introduced popular swarm intelligence metaheuristic algorithm, which has two significant limitations – low convergence accuracy and the tendency to get stuck in local optima. To alleviate these issues, this paper proposes an improved SCSO based on the arithmetic optimization algorithm (AOA), the refracted opposition-based learning and crisscross strategy, called the sand cat arithmetic optimization algorithm (SC-AOA), which introduced AOA to balance the exploration and exploitation and reduce the possibility of falling into the local optimum, used crisscross strategy to enhance convergence accuracy. The effectiveness of SC-AOA is benchmarked on 10 benchmark functions, CEC 2014, CEC 2017, CEC 2022, and eight engineering problems. The results show that the SC-AOA has a competitive performance.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.