Tuo Qin, Aibing Yu, Shuo Zhao, Kefan Li, Shaochun Qi, Jiawang Ye
{"title":"Tribological characteristics of dimpled surfaces filled with dopamine‐modified MoS<sub>2</sub>","authors":"Tuo Qin, Aibing Yu, Shuo Zhao, Kefan Li, Shaochun Qi, Jiawang Ye","doi":"10.1049/bsb2.12066","DOIUrl":null,"url":null,"abstract":"Abstract To improve the tribological characteristics of dimples on the surface of 45 steel, the dimples were filled with MoS 2 and MoS 2 modified by dopamine (MoS 2 @ DA), and ball‐disk friction and wear tests were conducted. Specifically, the dimple filling gap, abrasion depth, and surface cross‐sectional area of 45 steel were measured. The wear morphology of the friction ball and exfoliation of MoS 2 in the dimples and the bending characteristics of the specimens were studied. The surface friction coefficient of MoS 2 @ DA‐filled specimen was 17.9% lower than MoS 2 ‐filled specimen, and the dimple filling gap was 70.1% lower, the surface abrasion depth was 5.8% lower, and the abrasion cross‐sectional area was 17.7% smaller. Moreover, the bending strength of the MoS 2 @ DA specimen was 3.27 times greater than that of the MoS 2 specimen, and the exfoliation of MoS 2 was slowed by filling with the MoS 2 @ DA. Finally, the tribological characteristics were also superior for the specimens prepared with MoS 2 @ DA.","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/bsb2.12066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract To improve the tribological characteristics of dimples on the surface of 45 steel, the dimples were filled with MoS 2 and MoS 2 modified by dopamine (MoS 2 @ DA), and ball‐disk friction and wear tests were conducted. Specifically, the dimple filling gap, abrasion depth, and surface cross‐sectional area of 45 steel were measured. The wear morphology of the friction ball and exfoliation of MoS 2 in the dimples and the bending characteristics of the specimens were studied. The surface friction coefficient of MoS 2 @ DA‐filled specimen was 17.9% lower than MoS 2 ‐filled specimen, and the dimple filling gap was 70.1% lower, the surface abrasion depth was 5.8% lower, and the abrasion cross‐sectional area was 17.7% smaller. Moreover, the bending strength of the MoS 2 @ DA specimen was 3.27 times greater than that of the MoS 2 specimen, and the exfoliation of MoS 2 was slowed by filling with the MoS 2 @ DA. Finally, the tribological characteristics were also superior for the specimens prepared with MoS 2 @ DA.