Sulieman Ibraheem Shelash Al-Ha-Wary, Reena Gupta, I. B. Sapaev, Khulood H. Oudaha, Mays Jassim Abdalkareem, Ali Alsalamy, Ahmed Hussien Radie Alawadi, Fatemeh Zisti, Hossein Moein, Davoud Balarak
{"title":"Efficient removal of amoxycillin antibiotics onto magnetic graphene oxide: adsorption performance, mechanism, and regeneration exploration","authors":"Sulieman Ibraheem Shelash Al-Ha-Wary, Reena Gupta, I. B. Sapaev, Khulood H. Oudaha, Mays Jassim Abdalkareem, Ali Alsalamy, Ahmed Hussien Radie Alawadi, Fatemeh Zisti, Hossein Moein, Davoud Balarak","doi":"10.1080/03067319.2023.2266698","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe present study was done to synthesise an adsorbent, i.e. magnetic graphene oxide (MGO) nanocomposite, which was performed based on a facile precipitation method and was utilised in experiments for removing amoxycillin (AMX). The characteristics of the prepared adsorbent were defined based on commonly utilised analyses (SEM, XRD, BET, TEM, FTIR, VSM, and pHpzc). According to kinetic studies, the PSO model was found as an applicable model for describing data. Moreover, the two-step diffusion process, i.e. diffusion in the boundary layer and the porous structures, was perceived for the evaluated process based on the IPD model. The isotherm models, including Langmuir, Freundlich, Temkin, and D–R, were employed for fitting data and calculating AMX adsorption capacity, among which Langmuir was the best one; using this model, the maximum adsorption capacities for MGO were 91.4, 103.9, 112.3, and 122.5 mg/g, which were achieved at 20, 30, 40, and 50°C. In addition, a feasible, spontaneous, and endothermic process was found for the adsorption of AMX ions, according to thermodynamic studies. The highest percentage of removal (100%) was obtained for the initial concentration of 25 mg/L at 50°C using the adsorbent dose of 1.5 g/L at a pH of 5 and a contact time of 90 min. The values of 74.4 m2/g and 27.74 emu/g were detected for the specific surface area and saturation magnetisation values of the MGO, respectively. The overall results were representative of the suitability of the MGO as an adsorbent for removing AMX from aqueous media.KEYWORDS: Amoxycillinmagnetic graphene oxideadsorption isothermadsorption kineticsthermodynamic AcknowledgmentsThe authors would like to thank Zahedan University of Medical Sciences for financial support and assistance in performing the experimental work of this research (code: 10490).Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"127 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03067319.2023.2266698","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe present study was done to synthesise an adsorbent, i.e. magnetic graphene oxide (MGO) nanocomposite, which was performed based on a facile precipitation method and was utilised in experiments for removing amoxycillin (AMX). The characteristics of the prepared adsorbent were defined based on commonly utilised analyses (SEM, XRD, BET, TEM, FTIR, VSM, and pHpzc). According to kinetic studies, the PSO model was found as an applicable model for describing data. Moreover, the two-step diffusion process, i.e. diffusion in the boundary layer and the porous structures, was perceived for the evaluated process based on the IPD model. The isotherm models, including Langmuir, Freundlich, Temkin, and D–R, were employed for fitting data and calculating AMX adsorption capacity, among which Langmuir was the best one; using this model, the maximum adsorption capacities for MGO were 91.4, 103.9, 112.3, and 122.5 mg/g, which were achieved at 20, 30, 40, and 50°C. In addition, a feasible, spontaneous, and endothermic process was found for the adsorption of AMX ions, according to thermodynamic studies. The highest percentage of removal (100%) was obtained for the initial concentration of 25 mg/L at 50°C using the adsorbent dose of 1.5 g/L at a pH of 5 and a contact time of 90 min. The values of 74.4 m2/g and 27.74 emu/g were detected for the specific surface area and saturation magnetisation values of the MGO, respectively. The overall results were representative of the suitability of the MGO as an adsorbent for removing AMX from aqueous media.KEYWORDS: Amoxycillinmagnetic graphene oxideadsorption isothermadsorption kineticsthermodynamic AcknowledgmentsThe authors would like to thank Zahedan University of Medical Sciences for financial support and assistance in performing the experimental work of this research (code: 10490).Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
International Journal of Environmental Analytical Chemistry comprises original research on all aspects of analytical work related to environmental problems. This includes analysis of organic, inorganic and radioactive pollutants in air, water, sediments and biota; and determination of harmful substances, including analytical methods for the investigation of chemical or metabolic breakdown patterns in the environment and in biological samples.
The journal also covers the development of new analytical methods or improvement of existing ones useful for the control and investigation of pollutants or trace amounts of naturally occurring active chemicals in all environmental compartments. Development, modification and automation of instruments and techniques with potential in environment sciences are also part of the journal.
Case studies are also considered, particularly for areas where information is scarce or lacking, providing that reported data is significant and representative, either spatially or temporally, and quality assured. Owing to the interdisciplinary nature of this journal, it will also include topics of interest to researchers in the fields of medical science (health sciences), toxicology, forensic sciences, oceanography, food sciences, biological sciences and other fields that, in one way or another, contribute to the knowledge of our environment and have to make use of analytical chemistry for this purpose.