Conversation Modeling to Predict Derailment

Jiaqing Yuan, Munindar P. Singh
{"title":"Conversation Modeling to Predict Derailment","authors":"Jiaqing Yuan, Munindar P. Singh","doi":"10.1609/icwsm.v17i1.22200","DOIUrl":null,"url":null,"abstract":"Conversations among online users sometimes derail, i.e., break down into personal attacks. Derailment interferes with the healthy growth of communities in cyberspace. The ability to predict whether an ongoing conversation will derail could provide valuable advance, even real-time, insight to both interlocutors and moderators. Prior approaches predict conversation derailment retrospectively without the ability to forestall the derailment proactively. Some existing works attempt to make dynamic predictions as the conversation develops, but fail to incorporate multisource information, such as conversational structure and distance to derailment. We propose a hierarchical transformer-based framework that combines utterance-level and conversation-level information to capture fine-grained contextual semantics. We propose a domain-adaptive pretraining objective to unite conversational structure information and a multitask learning scheme to leverage the distance from each utterance to derailment. An evaluation of our framework on two conversation derailment datasets shows an improvement in F1 score for the prediction of derailment. These results demonstrate the effectiveness of incorporating multisource information for predicting the derailment of a conversation.","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conversations among online users sometimes derail, i.e., break down into personal attacks. Derailment interferes with the healthy growth of communities in cyberspace. The ability to predict whether an ongoing conversation will derail could provide valuable advance, even real-time, insight to both interlocutors and moderators. Prior approaches predict conversation derailment retrospectively without the ability to forestall the derailment proactively. Some existing works attempt to make dynamic predictions as the conversation develops, but fail to incorporate multisource information, such as conversational structure and distance to derailment. We propose a hierarchical transformer-based framework that combines utterance-level and conversation-level information to capture fine-grained contextual semantics. We propose a domain-adaptive pretraining objective to unite conversational structure information and a multitask learning scheme to leverage the distance from each utterance to derailment. An evaluation of our framework on two conversation derailment datasets shows an improvement in F1 score for the prediction of derailment. These results demonstrate the effectiveness of incorporating multisource information for predicting the derailment of a conversation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
会话建模预测脱轨
在线用户之间的对话有时会脱轨,也就是说,会演变成人身攻击。出轨会干扰网络空间社区的健康发展。预测正在进行的对话是否会脱轨的能力可以为对话者和主持人提供有价值的进步,甚至是实时的洞察力。先前的方法是回顾性地预测谈话的脱轨,而没有能力预先阻止脱轨。一些现有的研究试图对对话的发展进行动态预测,但未能纳入多源信息,如对话结构和离出轨的距离。我们提出了一个基于层次转换器的框架,该框架结合了话语级和会话级信息来捕获细粒度的上下文语义。我们提出了一个领域自适应的预训练目标来统一会话结构信息,并提出了一个多任务学习方案来利用从每个话语到脱轨的距离。对我们的框架在两个会话脱轨数据集上的评估显示,脱轨预测的F1分数有所提高。这些结果证明了结合多源信息预测会话脱轨的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statement of Removal AnnoBERT: Effectively Representing Multiple Annotators’ Label Choices to Improve Hate Speech Detection Just Another Day on Twitter: A Complete 24 Hours of Twitter Data #RoeOverturned: Twitter Dataset on the Abortion Rights Controversy SexWEs: Domain-Aware Word Embeddings via Cross-Lingual Semantic Specialisation for Chinese Sexism Detection in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1