A Multi-Platform Collection of Social Media Posts about the 2022 U.S. Midterm Elections

Rachith Aiyappa, Matthew R. DeVerna, Manita Pote, Bao Tran Truong, Wanying Zhao, David Axelrod, Aria Pessianzadeh, Zoher Kachwala, Munjung Kim, Ozgur Can Seckin, Minsuk Kim, Sunny Gandhi, Amrutha Manikonda, Francesco Pierri, Filippo Menczer, Kai-Cheng Yang
{"title":"A Multi-Platform Collection of Social Media Posts about the 2022 U.S. Midterm Elections","authors":"Rachith Aiyappa, Matthew R. DeVerna, Manita Pote, Bao Tran Truong, Wanying Zhao, David Axelrod, Aria Pessianzadeh, Zoher Kachwala, Munjung Kim, Ozgur Can Seckin, Minsuk Kim, Sunny Gandhi, Amrutha Manikonda, Francesco Pierri, Filippo Menczer, Kai-Cheng Yang","doi":"10.1609/icwsm.v17i1.22205","DOIUrl":null,"url":null,"abstract":"Social media are utilized by millions of citizens to discuss important political issues. Politicians use these platforms to connect with the public and broadcast policy positions. Therefore, data from social media has enabled many studies of political discussion. While most analyses are limited to data from individual platforms, people are embedded in a larger information ecosystem spanning multiple social networks. Here we describe and provide access to the Indiana University 2022 U.S. Midterms Multi-Platform Social Media Dataset (MEIU22), a collection of social media posts from Twitter, Facebook, Instagram, Reddit, and 4chan. MEIU22 links to posts about the midterm elections based on a comprehensive list of keywords and tracks the social media accounts of 1,011 candidates from October 1 to December 25, 2022. We also publish the source code of our pipeline to enable similar multi-platform research projects.","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social media are utilized by millions of citizens to discuss important political issues. Politicians use these platforms to connect with the public and broadcast policy positions. Therefore, data from social media has enabled many studies of political discussion. While most analyses are limited to data from individual platforms, people are embedded in a larger information ecosystem spanning multiple social networks. Here we describe and provide access to the Indiana University 2022 U.S. Midterms Multi-Platform Social Media Dataset (MEIU22), a collection of social media posts from Twitter, Facebook, Instagram, Reddit, and 4chan. MEIU22 links to posts about the midterm elections based on a comprehensive list of keywords and tracks the social media accounts of 1,011 candidates from October 1 to December 25, 2022. We also publish the source code of our pipeline to enable similar multi-platform research projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于2022年美国中期选举的社交媒体帖子的多平台收集
数以百万计的公民利用社交媒体来讨论重要的政治问题。政客们利用这些平台与公众建立联系,并宣传自己的政策立场。因此,来自社交媒体的数据使得许多关于政治讨论的研究成为可能。虽然大多数分析仅限于来自单个平台的数据,但人们被嵌入到跨越多个社交网络的更大的信息生态系统中。在这里,我们描述并提供对印第安纳大学2022年美国中期多平台社交媒体数据集(MEIU22)的访问,这是来自Twitter, Facebook, Instagram, Reddit和4chan的社交媒体帖子的集合。meu22根据综合关键词列表链接中期选举相关帖子,并追踪2022年10月1日至12月25日期间1011名候选人的社交媒体账户。我们还发布了管道的源代码,以支持类似的多平台研究项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statement of Removal AnnoBERT: Effectively Representing Multiple Annotators’ Label Choices to Improve Hate Speech Detection Just Another Day on Twitter: A Complete 24 Hours of Twitter Data #RoeOverturned: Twitter Dataset on the Abortion Rights Controversy SexWEs: Domain-Aware Word Embeddings via Cross-Lingual Semantic Specialisation for Chinese Sexism Detection in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1