Spectral Methods from Tensor Networks

IF 1.2 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS SIAM Journal on Computing Pub Date : 2023-04-04 DOI:10.1137/20m1311661
Ankur Moitra, Alexander S. Wein
{"title":"Spectral Methods from Tensor Networks","authors":"Ankur Moitra, Alexander S. Wein","doi":"10.1137/20m1311661","DOIUrl":null,"url":null,"abstract":"A tensor network is a diagram that specifies a way to “multiply” a collection of tensors together to produce another tensor (or matrix). Many existing algorithms for tensor problems (such as tensor decomposition and tensor PCA), although they are not presented this way, can be viewed as spectral methods on matrices built from simple tensor networks. In this work we leverage the full power of this abstraction to design new algorithms for certain continuous tensor decomposition problems. An important and challenging family of tensor problems comes from orbit recovery, a class of inference problems involving group actions (inspired by applications such as cryo-electron microscopy). Orbit recovery problems over finite groups can often be solved via standard tensor methods. However, for infinite groups, no general algorithms are known. We give a new spectral algorithm based on tensor networks for one such problem: continuous multi-reference alignment over the infinite group SO(2). Our algorithm extends to the more general heterogeneous case.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"65 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1311661","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

A tensor network is a diagram that specifies a way to “multiply” a collection of tensors together to produce another tensor (or matrix). Many existing algorithms for tensor problems (such as tensor decomposition and tensor PCA), although they are not presented this way, can be viewed as spectral methods on matrices built from simple tensor networks. In this work we leverage the full power of this abstraction to design new algorithms for certain continuous tensor decomposition problems. An important and challenging family of tensor problems comes from orbit recovery, a class of inference problems involving group actions (inspired by applications such as cryo-electron microscopy). Orbit recovery problems over finite groups can often be solved via standard tensor methods. However, for infinite groups, no general algorithms are known. We give a new spectral algorithm based on tensor networks for one such problem: continuous multi-reference alignment over the infinite group SO(2). Our algorithm extends to the more general heterogeneous case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
张量网络的谱方法
张量网络是一种图表,它指定了一种将一组张量“相乘”以产生另一个张量(或矩阵)的方法。许多现有的张量问题算法(如张量分解和张量主成分分析),尽管它们不是以这种方式提出的,但它们可以被视为基于简单张量网络构建的矩阵的谱方法。在这项工作中,我们充分利用这种抽象的力量,为某些连续张量分解问题设计新的算法。一个重要且具有挑战性的张量问题家族来自轨道恢复,这是一类涉及群体行为的推理问题(受到低温电子显微镜等应用的启发)。有限群上的轨道恢复问题通常可以通过标准张量方法来解决。然而,对于无限群,没有已知的通用算法。针对无限群SO(2)上的连续多参考对准问题,提出了一种新的基于张量网络的谱算法。我们的算法扩展到更一般的异构情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
期刊最新文献
Optimal Resizable Arrays Stronger 3-SUM Lower Bounds for Approximate Distance Oracles via Additive Combinatorics Resolving Matrix Spencer Conjecture up to Poly-Logarithmic Rank Complexity Classification Transfer for CSPs via Algebraic Products Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1