Growth and magnetic properties of two-dimensional vanadium-doped Cr<sub>2</sub>S<sub>3</sub> nanosheets

None Yang Rui-Long, None Zhang Yu-Ying, None Yang Ke, None Jiang Qi-Tao, None Yang Xiao-Ting, None Guo Jin-Zhong, None Xu Xiao-Hong
{"title":"Growth and magnetic properties of two-dimensional vanadium-doped Cr&lt;sub&gt;2&lt;/sub&gt;S&lt;sub&gt;3&lt;/sub&gt; nanosheets","authors":"None Yang Rui-Long, None Zhang Yu-Ying, None Yang Ke, None Jiang Qi-Tao, None Yang Xiao-Ting, None Guo Jin-Zhong, None Xu Xiao-Hong","doi":"10.7498/aps.73.20231229","DOIUrl":null,"url":null,"abstract":"Two-dimensional magnetic materials are emerging materials developed in recent years and have attracted much attention for their unique magnetic properties and structural features in single or few layers of atomic thickness. Among them, ferromagnetic materials have a wide range of applications such as information memory and processing. Therefore the current research is mainly focused on enriching the two-dimensional ferromagnetic database and developing modification strategies for magnetic modulation. In this paper, two-dimensional vanadium-doped Cr<sub>2</sub>S<sub>3</sub>nanosheets were successfully grown on mica substrates by atmospheric pressure chemical vapour deposition. The thickness and size of the nanosheets can be effectively regulated by changing the temperature and mass of vanadium source VCl<sub>3</sub> powders, with the temperature of 765℃ and the mass of 0.010 g as the most appropriate conditions for the growth of nanosheets. The nanosheets were also characterised by optical microscopy, atomic force microscopy, raman spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, X-ray photoelectron spectroscopy, and the nanosheets were regular in shape, with flat surfaces and controllable thicknesses, and high quality vanadium-doped Cr<sub>2</sub>S<sub>3</sub> nanosheets were prepared. Meanwhile, the magnetic characterisation of the doped samples showed that the Curie transition temperature of the vanadium doped samples changed to 105 K, and the maximum magnetic moment point of 75 K in the M-T curve disappeared after V doping, and from subferromagnetic to ferromagnetic, and the coercivity in the M-H curve also increased significantly, which proved that the vanadium doping could effectively regulate the magnetic properties of Cr<sub>2</sub>S<sub>3</sub> nanosheets. These results are expected to advance the possibility of vanadium-doped Cr<sub>2</sub>S<sub>3</sub> materials toward practical applications and become one of the ideal candidate material for next generation spintronic applications.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.73.20231229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional magnetic materials are emerging materials developed in recent years and have attracted much attention for their unique magnetic properties and structural features in single or few layers of atomic thickness. Among them, ferromagnetic materials have a wide range of applications such as information memory and processing. Therefore the current research is mainly focused on enriching the two-dimensional ferromagnetic database and developing modification strategies for magnetic modulation. In this paper, two-dimensional vanadium-doped Cr2S3nanosheets were successfully grown on mica substrates by atmospheric pressure chemical vapour deposition. The thickness and size of the nanosheets can be effectively regulated by changing the temperature and mass of vanadium source VCl3 powders, with the temperature of 765℃ and the mass of 0.010 g as the most appropriate conditions for the growth of nanosheets. The nanosheets were also characterised by optical microscopy, atomic force microscopy, raman spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, X-ray photoelectron spectroscopy, and the nanosheets were regular in shape, with flat surfaces and controllable thicknesses, and high quality vanadium-doped Cr2S3 nanosheets were prepared. Meanwhile, the magnetic characterisation of the doped samples showed that the Curie transition temperature of the vanadium doped samples changed to 105 K, and the maximum magnetic moment point of 75 K in the M-T curve disappeared after V doping, and from subferromagnetic to ferromagnetic, and the coercivity in the M-H curve also increased significantly, which proved that the vanadium doping could effectively regulate the magnetic properties of Cr2S3 nanosheets. These results are expected to advance the possibility of vanadium-doped Cr2S3 materials toward practical applications and become one of the ideal candidate material for next generation spintronic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维掺钒Cr<sub>2</sub>S<sub>3</sub>nanosheets
二维磁性材料是近年来发展起来的新兴材料,以其独特的磁性能和单层或多层原子厚度的结构特点而备受关注。其中,铁磁材料在信息存储、信息处理等方面有着广泛的应用。因此,目前的研究主要集中在丰富二维铁磁数据库和开发磁调制的修改策略上。本文采用常压化学气相沉积法在云母衬底上成功生长了二维掺钒Cr<sub>2</sub>S<sub>3</sub>纳米片。通过改变钒源VCl<sub>3</sub>粉末中,温度为765℃,质量为0.010 g为纳米片生长的最适宜条件。采用光学显微镜、原子力显微镜、拉曼光谱、扫描电镜、x射线能谱、x射线光电子能谱对纳米片进行了表征,纳米片形状规则,表面平整,厚度可控,具有高质量的掺钒Cr<sub>2</sub>S<sub>3</sub>制备了纳米片。与此同时,掺杂样品的磁性质表明,钒掺杂样品的居里转变温度改为105 K, 75 K的最大磁矩点在m - t曲线V掺杂后消失,从subferromagnetic铁磁,和矫顽力的mh曲线也显著增加,这证明了钒掺杂可以有效地调节Cr<的磁性;sub> 2 & lt; / sub> S< sub> 3 & lt; / sub>nanosheets。这些结果有望推进钒掺杂Cr<sub>2</sub>S<sub>3</sub>材料走向实际应用,成为下一代自旋电子应用的理想候选材料之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Theory of quantum holography based on two-photon Interference Back contact optimization for Sb<sub>2</sub>Se<sub>3</sub> solar cells Algorithms for calculating polarization direction based on spatial modulation of vector optical field Enhanced microwave absorption properties of large-sized monolayer two-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> loaded with Fe<sub>3</sub>O<sub>4</sub> nanoparticles Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1